Development of the 4-mirror Compton cavity

Tomoya Akagi Hiroshima University

POSIPOL 2011 IHEP, Beijing

Collaboration

Hiroshima University

Tomoya Akagi, Masao Kuriki, Tohru Takahashi, Ryuta Tanaka, Shuhei Miyoshi, Hitoshi Yoshitama

• KEK

Sakae Araki, Junji Urakawa, Tsunehiko Omori, Toshiyuki Okugi, Hirotaka Shimizu, Nobuhiro Terunuma, Yoshisato Funahashi,Yosuke Honda

Waseda University

Kazuyuki Sakaue, Masakazu Washio

Seikei University

Hiromi Kataoka, Tadashi Kon

Special thanks to French team!!

Contents

- Introduction
- Property of 3D 4-mirror cavity
- Preparation for installation
- Summary

Development of an optical cavity

aser

e

Increase laser power for high intense gamma-rays with an optical cavity

High finesse Small spot size] required

→ 3D 4-mirror cavity

Gamma-rays generation with a 2-mirror cavity@KEK-ATF

Parameters of the 2-mirror cavity

Waist Size(o)	30µm
Enhancement factor	760
Stacking laser power	1.5kW

Number of gamma-rays 10photons / bunch / crossing

phase@357MHz [rad]

Next step Smaller waist size More enhancement

with a small spot size

Why 3D 4-mirror cavity?

Polarization property of 3D 4-mirror cavity

3D 4-mirror cavity has circular polarization dependence due to the rotation of the image.

Calculation of spot size

L is small laser profile is small and ellipse

Measurement of transmitted light

cavity design

Model calculation of spot size

It can acheve the small spotsize

Preparation of the cavity installation

- new 4-mirror cavity
 - High finesse(~5000)
 - injection test in the air

Vacuum chamber for 4-mirror cavity

- pre-install near ATF beam line

3D 4-mirror cavity

3D 4-mirror cavity

Total cavity length 1680mm

parameters of 4-mirror cavity

R1	R2,R3,R4	Finesse	Enhacement
99.90%	99.99%	4830	1890

R1,R2,R3,R4 reflectivity of mirror

If injection power is 10W Stacking laser power ~19kW

4-mirror cavity test

Finesse 5800±800

consistent with reflectivity of mirrors

spot size measurement

calculated from beam divergence

 $w_x(1\sigma) = 20\pm 2 \ \mu m$ $w_y(1\sigma) = 27\pm 3 \ \mu m$ L photo-diode with pinhole

Reason

L and mirror alignment of mirrors are not perfect. Need more tuning.

KEK-ATF

Vacuum chamber pre-install@KEK-ATF

pre-installed side of beam line

Summary

- We are developing 3D 4-mirror cavity for high intense gamma rays generation by laser-Compton.
- Installation preparing is going on with new 4-mirror cavity.
- Installation plan
 this October

Rotation of the image

The image rotates in the three-dimensional optical path.

An example of the rotation of the image

Calculation of light propagation

M(z):Transfer matrix of a single roundtrip $M(z) = D(L/2 + \delta + z) \cdot R(\theta) \cdot F(f_t, f_s) \cdot R(\theta) \cdot R(\theta)$ $\cdot D(3L - 2\delta) \cdot R(\theta) \cdot F(f_s, f_t) \cdot D(L/2 + \delta - z)$

D(L):Drift spaceF :Concave mirrorR(θ):Image rotation

Laser spot size depends on geometry of the mirrors

