Neutrinoless double beta decay and classification of the mechanisms

Gui-Jun Ding

University of Science and Technology of China

Seminar at experimental physics division, institute of high energy physics, CAS, April 19, 2024

Based on arXiv:2110.15347, JHEP 12 (2021) 169; arXiv:2301.02503, JHEP 03 (2023) 138; arXiv:2405.xxxxx, in collaboration with Ping-Tao Chen, Shi-Yu Li, Chang-Yuan Yao

The state of art of neutrino mixing

 $m_{\text{lightest}} = ?$

Massive neutrinos: Dirac or Majorana?

$$v \neq v^{c} \qquad v = v^{c}$$

• neutrinoless double beta decay

- lepton number violation at collider
- cosmology

The 2β-decays

2vββ decays

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{v_e}$

[Goeppert-Mayer, Phys. Rev.48,512(1935)]

- Allowed in SM
- second order in weak interaction
- Natural background for decay

Ονββ decays

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

$\Delta L = 2$

[Furry, Phys.Rev.56,1184(1939)]

- NOT allowed in SM→rare
- Lepton number violation → neutrinos are Majorana fermions

The Ovßß-decays: signature and candidate nuclei

0vββ is potentially observable in certain even-even nuclei (9 isotopes including ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe) for which single beta decay is energetically forbidden. The decay rate is less than 1 event per ton and year.

5

Current and future experiments

Most stringent constraints on the half life:

- 136 Xe (KamLAND-Zen): $T_{1/2}$ > 2.3x10²⁶ yrs [KamLAND-Zen Collaboration, 2203.02139]
- ⁷⁶Ge (GERDA): $T_{1/2} > 1.8 \times 10^{26} \text{ yrs}$ [GERDA collaboration, 2009.06079]
- ¹³⁰Te (CUORE): $T_{1/2}^{-}$ > 2.2x 10²⁵ yrs [CUORE collaboration, 2104.06906]

There are many $0\nu\beta\beta$ decay experiments in plan and construction

[Agostini, Benato, Detwiler, Menendez, Vissani, 2202.01787]

$0\nu\beta\beta$ experiments in China

CJPL-II (China Jin Ping underground Lab-II)

7

Discovery sensitivities of current and next-generation $0\nu\beta\beta$ experiments

- tonne-scale to multi-tonne scale detectors
- multiple isotopes, multiple techniques: bolometers, scintillators, trackers, TPC, semiconductors
- the discovery sensitivity depends on the matrix elements
- will cover all IO region

[Agostini, et al, 2107.09104]

EDF

IBM

⁷⁶Ge

mean ± 3σ

⁰⁰Mo

 $T_{1/2} = 1.6 \times 10^{28} \text{ yr}$ $T_{1/2} = 1.5 \times 10^{27} \text{ yr}$ $T_{1/2} = 1.3 \times 10^{28} \text{ yr}$

¹³⁶Xe

25

20

15

10

Black Box theorem (Schechter-Valle theorem)

Whatever is the mechanism of 0vββ decay, if 0vββ decay is observed, it is possible to construct a 4-loop diagram that contributes to the Majorana neutrino mass matrix

Only very tiny Majorana mass is induced

 $\delta m_{\nu} \approx 10^{-25} \text{ eV}$ [Duerr, Lindner, Merle, 1105.0901; Liu,Zhang,Zhou,1606.04886]

- It is too small to explain observed neutrino masses and splittings.
- In a concrete model of 0vββ decay, the leading order contribution to neutrino mass can appear at lower order and it can be larger than 10⁻²⁵eV.

Majorana neutrino interpretation of 0vββ

Mass mechanism: $0v\beta\beta$ decay is usually assumed to be dominantly mediated by light and massive Majorana neutrinos.

> $0\nu\beta\beta$ decay, single β decay and cosmology measure different combination of the neutrino masses, they are complementary probes of neutrino mass.

[Capozzi, Valentino, Lisi, Marrone, Melchiorri, Palazzo, 2003.08511]

Flavor symmetry in 0vßß decay

Flavor symmetry: relate three generations of fundamental fermions to explain the origin of fermion of mass hierarchies and mixings.

[Xing, 1909.09610; Feruglio, Romanino, 1912.06028; Ding, King, 2311.09282; Ding, Valle, 2402.16963]

\succ Test neutrino mass sum rules of flavor symmetry at $0\nu\beta\beta$ decay

[Snowmass, 2203.12169] 13

 \succ Test modular invariant models at $0\nu\beta\beta$

[Chen, Ding, King, 2101.12724]

Possible BSM physics in 0vßß decay

The $0\nu\beta\beta$ decay can also be induced by other $\Delta L=2$ physics besides the Majorana neutrino mass. There are many possible scenarios:

15

Classification of 0vßß mechanisms from SMEFT

The amplitude of 0vββ decay can be generally divided into:

 $\mathcal{O}_{10}^{SR} = (\overline{u}_R \gamma^\mu d_R) (\overline{u}_R Q_i) (\overline{\ell}_i \gamma_\mu e_R^c) \,,$

 $\mathcal{O}_{11}^{SR} = (\overline{u}_R \gamma^\mu \lambda^A d_R) (\overline{u}_R \lambda^A Q_i) (\overline{\ell}_i \gamma_\mu e_R^c)$

[Pas, Hirsch, Klapdor, Kovalenko, hep-ph/0008182, hep-ph/9804374; Graesser, 1606.04549]

Decomposing the short-range 0vßß operators

- "Recipe" for a systematic classification of the possible realizations
- (1) Topolopies: identify the L-loop connected topologies with 6 external legs
- (2) **Diagrams**: assign the fields of $0\nu\beta\beta$ operators to external lines, and specify the Lorentz nature (spinor or scalar) of each internal line.
- ③ **Models**: fix the $SU(3)_{c} \times SU(2)_{L} \times U(1)_{\gamma}$ quantum numbers of the internal fields by gauge invariance of each interaction vertex

17

Tree-level decomposition

		Long	Mediat	or $(U(1)_{em})$,	$SU(3)_c)$	
#	Decomposition	Range?	$S \text{ or } V_{\rho}$	ŵ	S' or V'_{a}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1,1)	Mass mechan., RPV 58–60, LR-symmetric models 39, Mass mechanism with ν_S 61 TeV scale seesaw, e.g., 62–63
			(+1, 8)	(0, 8)	(-1, 8)	64
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	$(+4/3, \bar{3})$	(+2, 1)	
			(+1, 8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
			(+1, 8)	$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(+1/3, \bar{3})$	RPV 58 60, LQ 65 66
			(+1, 8)	(0,8)	$(+1/3, \bar{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
			(+1, 8)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV 58 60], LQ 65 66
			(+1, 8)	(0, 8)	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	$(-2/3, \bar{3})$	(0, 1)	$(+1/3, \bar{3})$	RPV 58 60
			$(-2/3, \bar{3})$	(0, 8)	(+1/3, 3)	RPV 58 60
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		$(-2/3, \bar{3})$	(-1/3, 3)	$(+1/3, \bar{3})$	
			$(-2/3, \bar{3})$	$(-1/3, \overline{6})$	$(+1/3, \bar{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		(+4/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V_{ρ} and V'_{ρ}
			(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \bar{3})$	(+5/3, 3)	(+2, 1)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2, 1)	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	$(+4/3, \bar{3})$	(+2, 1)	only with V_{ρ}
			$(+2/3, \overline{6})$	$(+4/3, \bar{3})$	(+2, 1)	
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	$(-2/3, \bar{3})$	(0, 1)	(+2/3, 3)	RPV 58 60
			$(-2/3, \bar{3})$	(0,8)	(+2/3, 3)	RPV 58 60
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		$(+4/3, \bar{3})$	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 🔄 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \bar{3})$	$(+1/3, \bar{3})$	(+2/3, 3)	only with V_{μ}
			(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	(+1/3, 3)	RPV 58 60
			(-1/3, 3)	(0, 8)	$(+1/3, \bar{3})$	RPV 58 60
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	(+1/3, 3)	$(-2/3, \bar{3})$	only with V'_{ρ}
			(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	$(-2/3, \bar{3})$	only with V'_{ρ}
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	

[Bonnet, Hirsch, Ota, Winter, 1212.3045]

Topologies for short-range 0vββ

Topolopies: Feynman diagrams where no property of fields is considered (i) All connected topologies with 3- and 4- point vertices and 6 external legs

(ii) Remove tadpoles and self-energies (divergent)

(iii) Exclude non-renormalizable topologies

The 6 external legs are quark and lepton fields for short-range 0vββ

(iv) Discard topologies with 3-point loop vertices

any loop with 3 external legs can be compressible to a renormalizable vertex₁₉

2 tree + 6 one-loop renormalizable topologies

field insertions: topologies→diagrams

Focusing only on fermions and scalar bosons [Not considering gauge bosons]

One-loop level

Three kinds of renormalizable vertices
①fermion-fermion-scalar (FFS)

②scalar-scalar-scalar (SSS)

③scalar-scalar-scalar (SSSS)

[Chen, Ding, Yao, 2110.15347]

 $\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ &$

Determine quantum numbers: diagrams→models

The $SU(3)_{c} \times SU(2)_{L} \times U(1)_{\gamma}$ quantum numbers of the mediators fields are fixed by gauge invariance of each interaction vertex

• **3-point vertex:** $\overline{F}_1 F_2 S$, $S_1 S_2 S_3$

$$n_{\bar{F}_1} \otimes n_{F_2} \otimes n_S \supset \mathbf{1}, \quad Y_{\bar{F}_1} + Y_{F_2} + Y_S = 0$$

$$n_{S_1} \otimes n_{S_2} \otimes n_{S_3} \supset \mathbf{1}, \quad Y_{S_1} + Y_{S_2} + Y_{S_3} = 0$$

 n_X denotes the SU(2)_L or SU(3)_C representation of the field X

4-point vertex: $S_1 S_2 S_3 S_4$ $n_{S_1} \otimes n_{S_2} \otimes n_{S_3} \otimes n_{S_4} \supset \mathbf{1}, \qquad \sum_i Y_{S_i} = 0$

GROUPMATH

Mathematica package **GroupMath** can help to determine the SM quantum numbers.

Genuine models

Determine quantum numbers: diagrams→models

A large number of possible diagrams. For detail, see the attachment http://staff.ustc.edu.cn/~dinggj/supplementary_materials/Onbb.zip

Decomposing the long-range 0vßß operators

Long-range mechanism is not subject to helicity suppression!

 $\Delta L = 2$ $\mathcal{O}_{1}^{LR} = \epsilon^{ik} \epsilon^{jl} (\overline{\ell_{i}^{c}} \ell_{j}) (\overline{d_{R}} Q_{k}) H_{l},$ $\mathcal{O}_{2}^{LR} = \epsilon^{ik} \epsilon^{jl} (\overline{\ell_{i}^{c}} \gamma^{\mu\nu} \ell_{j}) (\overline{d_{R}} \gamma_{\mu\nu} Q_{k}) H_{l},$ $\mathcal{O}_{3}^{LR} = \epsilon^{jk} (\overline{\ell_{i}^{c}} \ell_{j}) (\overline{Q}^{i} u_{R}) H_{k},$ $\mathcal{O}_{4}^{LR} = (\overline{\ell_{i}^{c}} \gamma^{\mu} e_{R}) (\overline{d_{R}} \gamma_{\mu} u_{R}) \epsilon^{ij} H_{j}$

[Babu,Leung,hep-ph/0106054; Helo, Hirsch,Ota,1602.03362; Lehman,1410.4193]

topologies

> Topologies

[Chen, Ding, Yao, 2301.02503]

25

Models: large variety of possible realizations accessible at high-energy colliders and high-intensity facilities, all genuine long-range 0vββ models up to 1-loop in the file <u>http://staff.ustc.edu.cn/~dinggj/supplementary_materials/Long_range_0nbb.zip</u>

> Black box theorem in long-range 0vββ: $\Delta L = 2$ operators $\rightarrow 0\nu\beta\beta \& \nu$ mass

Majorana neutrino masses are generated at least at the 2-loop order, regardless of long-range 0vββ operators

An example model of long-range 0vßß decay

Future ton-scale experiments impose strong constraint on the model and new physics contribution
2.5

Distinguishing different 0vßß mechanisms

> Comparison of the decay rates obtained using different isotopes

$$R^{\mathcal{O}_{i}}(^{A}X) \equiv \frac{T_{1/2}^{\mathcal{O}_{i}}(^{A}X)}{T_{1/2}^{\mathcal{O}_{i}}(^{76}Ge)} = \frac{\sum_{j} |\mathcal{M}_{j}^{\mathcal{O}_{i}}(^{76}Ge)|^{2} G_{j}^{\mathcal{O}_{i}}(^{76}Ge)}{\sum_{k} |\mathcal{M}_{k}^{\mathcal{O}_{i}}(^{A}X)|^{2} G_{k}^{\mathcal{O}_{i}}(^{A}X)}$$

[Graf,Lindner,Scholer,2204.10845]

 \succ Combining $0\nu\beta\beta$ decay, collider measurements and cosmology

$$\mathcal{L} \supset \underline{g_Q}\overline{Q}Sd_R + \underline{g_L}\overline{L}(i\tau^2)S^*F + \lambda_{HS}(S^{\dagger}H)^2 + \text{h.c.}$$

[Harz, Ramsey-Musolf, Shen, Urrutia-Quiroga, 2106.10838; Graesser, Li, Ramsey-Musolf, Shen, Urrutia-Quiroga, 2202.01237]

Summary

- Ovββ is the most sensitive probe to the Majorana nature of neutrinos. However, there are many possible physics mechanisms divided into mass mechanism, short-range mechanism and long-range mechanism.
- Systematic decomposition 0vββ operators: topologies→diagrams
 → models
- Many open questions: the 0vββ models in future colliders and LFV searches, implications in cosmology and leptogenesis....
- Both theoretical and experimental efforts are needed to fix the 0vββ signal and underling mechanism.

Thank you for your attention!

Backup

Nuclear matrix elements

[Engel, Menendez, 1610.06548]

Unfortunately, nuclear matrix elements can be calculated only based on some models which describe many-body interactions of nucleons in nuclei. Since different models focus on different aspects of nuclear physics, large uncertainties (a factor of 2 or 3) are unavoidable.

$0\nu\beta\beta$ at LHC

Collider signature: same-sign dilepton +2 jets + no E_T^{miss}

$$p + p \rightarrow 2e^{\pm} + 2jets$$

determine 0vßß mechanisms

measure the angular and energy distributions of electron

-0.8

-0.6

0.2

Cosine of angle between electrons

0.4

0.6

0.8

-1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Cosine of angle between electrons

Events

-1

Distinguish different mechanisms via measurements in different isotopes

[Deppisch, Pas,hep-ph/0612165]

[Gehman,Elliott,hep-ph/0701099]

determine 0vßß mechanisms

mechanism	amplitude and particle physics parameter	current limit	test	
light neutrino exchange	$rac{G_F^2}{q^2}ig U_{ei}^2 m_iig $	0.5 eV	oscillations, cosmology, neutrino mass	
heavy neutrino exchange	$G_F^2 \left \frac{S_{ei}^2}{M_i} \right $	$2 \times 10^{-8} \text{ GeV}^{-1}$	LFV, collider	
heavy neutrino and RHC	$G_F^2 m_W^4 \left \frac{V_{ei}^2}{M_i M_{W_R}^4} \right $	$4\times 10^{-16}~{\rm GeV}^{-5}$	flavor, collider	
Higgs triplet and RHC	$G_F^2 m_W^4 \left \frac{(M_R)_{ee}}{m_{\Delta_R}^2 M_{W_R}^4} \right $	$10^{-15} \text{ GeV}^{-1}$	flavor, collider e^- distribution	
$\lambda\text{-mechanism}$ with RHC	$G_F^2 \frac{m_W^2}{q} \left \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} \right $	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	flavor, collider, e^- distribution	
$\eta\text{-mechanism}$ with RHC	$G_F^2 rac{1}{q} an oldsymbol{\zeta} \left oldsymbol{U_{ei}} ilde{oldsymbol{S}_{ei}} ight $	6×10^{-9}	flavor, collider, e^- distribution	
short-range R	$\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider, flavor	
long-range R	$\left \frac{G_F}{q} \right \sin 2\theta^b \lambda_{131}^\prime \lambda_{113}^\prime \left(\frac{1}{m_{\tilde{b}_1}^2} - \frac{1}{m_{\tilde{b}_2}^2} \right) \right $	$2 \times 10^{-13} \text{ GeV}^{-2}$	flavor,	
	$\sim rac{G_F}{q} m_b rac{ oldsymbol{\lambda_{131}'} oldsymbol{\lambda_{113}'}}{oldsymbol{\Lambda_{SUSY}^3}}$	$1 \times 10^{-14} \text{ GeV}^{-3}$	collider	
Majorons	$\propto \langle g_\chi angle ext{ or } \langle g_\chi angle ^2$	$10^{-4} \dots 1$	spectrum, cosmology	

tree-level decomposition of long-range 0vßß operators

#	Decompositions	Me	diators	Projection to the basis ops.	m_{ν} @tree	m_{ν} @1loop	m_{ν} @2loop
#1	$(L_{\alpha}L_{\beta})(H)(\overline{d_R}Q)$	$S(1,1)_{+1}$	$S'(1,2)_{+rac{1}{2}}$	$-\mathcal{O}_{3a}(lpha,eta)$		$\mathrm{T} \nu \mathrm{I}$ -ii w. $\overline{\ell_R} L S'^{\dagger}$	$T2_4^{\rm B}(\alpha \neq \beta)$ $\mathcal{O}_3^7 \text{ in } [38]$
		$S(1, 3)_{+1}$	$S'(1,2)_{+\frac{1}{2}}$	$-\mathcal{O}_{3b}(lpha,eta)-\mathcal{O}_{3b}(eta,lpha)$	type II	_	
#2	$(L_{\alpha}Q)(H)(\overline{d_R}L_{\beta})$	$S(\overline{3},1)_{+\frac{1}{3}}$	$S'(\overline{3},2)_{-rac{1}{6}}$	$\frac{1}{2}\mathcal{O}_{3b}(\alpha,\beta) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\alpha,\beta)$		$T\nu$ I-ii $\frac{53}{O_3^8}$ in $\frac{38}{38}$	[<u>14</u> , <u>68</u>]
		$S(\bar{3}, 3)_{+\frac{1}{3}}$	$S'(\overline{3},2)_{-rac{1}{6}}$	$ \frac{\frac{1}{2}\mathcal{O}_{3a}(\alpha,\beta) - \frac{1}{2}\mathcal{O}_{3a}^{\text{ten.}}(\alpha,\beta) }{-\frac{1}{2}\mathcal{O}_{3b}(\beta,\alpha) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\beta,\alpha) } $		ΤνΙ-ii <u>53</u>] O ₃ in <u>38</u>]	[14]
#3	$(L_{\alpha}L_{\beta})(Q)(\overline{d_R}H)$	$S(1, 1)_{+1}$	$\psi_{L,R}(3,2)_{-rac{5}{6}}$	$-\mathcal{O}_{3a}(lpha,eta)$		$\begin{bmatrix} T\nu I-ii \\ w.S^{\dagger}HH' \end{bmatrix}$	$\begin{array}{c} T2_1^{\rm B}(\alpha \neq \beta) \\ \mathcal{O}_3^1 \text{ in } [38] \end{array}$
		$S(1,3)_{+1}$	$\psi_{L,R}({f 3},{f 2})_{-rac{5}{6}}$	$-\mathcal{O}_{3b}(lpha,eta)-\mathcal{O}_{3b}(eta,lpha)$	type II		
#4	$(L_{\alpha}H)(Q)(\overline{d_R}L_{\beta})$	$\psi_R(1,1)_0$	$S(\overline{3}, 2)_{-\frac{1}{6}}$	$\frac{1}{2}\mathcal{O}_{3b}(eta,lpha)+\frac{1}{2}\mathcal{O}_{3b}^{ ext{ten.}}(eta,lpha)$	type I		
		$\psi_R(1,3)_0$	$S(\overline{3}, 2)_{-\frac{1}{6}}$	$\begin{aligned} &-\frac{1}{2}\mathcal{O}_{3a}(\alpha,\beta)+\frac{1}{2}\mathcal{O}_{3a}^{\text{ten.}}(\alpha,\beta)\\ &-\frac{1}{2}\mathcal{O}_{3b}(\alpha,\beta)+\frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\alpha,\beta)\end{aligned}$	type III		
#5	$(L_{\alpha}L_{\beta})(\overline{d_R})(QH)$	$S(1,1)_{+1}$	$\psi_{L,R}({f 3},{f 1})_{+rac{2}{3}}$	$\mathcal{O}_{3a}(lpha,eta)$		$\begin{bmatrix} \mathrm{T}\nu\mathrm{I-ii}\\ \mathrm{w.}S^{\dagger}HH' \end{bmatrix}$	$\begin{array}{c} T2_2^{\rm B}(\alpha \neq \beta) \\ \mathcal{O}_3^2 \text{ in } [38] \end{array}$
		$S(1, 3)_{+1}$	$\psi_{L,R}({f 3},{f 3})_{+rac{2}{3}}$	$-\mathcal{O}_{3b}(lpha,eta)-\mathcal{O}_{3b}(eta,lpha)$	type II		
#6	$(L_{\alpha}Q)(\overline{d_R})(L_{\beta}H)$	$S(\bar{3},1)_{+\frac{1}{3}}$	$\psi_R(1,1)_0$	$-rac{1}{2}\mathcal{O}_{3b}(lpha,eta)+rac{1}{2}\mathcal{O}_{3b}^{ ext{ten.}}(lpha,eta)$	type I		
		$S(\overline{3},3)_{+\frac{1}{3}}$	$\psi_R(1,3)_0$	$\frac{\frac{1}{2}\mathcal{O}_{3a}(\alpha,\beta) - \frac{1}{2}\mathcal{O}_{3a}^{\text{ten.}}(\alpha,\beta)}{-\frac{1}{2}\mathcal{O}_{3b}(\beta,\alpha) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\beta,\alpha)}$	type III		
#7	$(L_{\alpha}Q)(L_{\beta})(\overline{d_R}H)$	$S(\overline{3},1)_{+rac{1}{3}}$	$\psi_{L,R}(3,2)_{-rac{5}{6}}$	$\frac{1}{2}\mathcal{O}_{3b}(\alpha,\beta) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\alpha,\beta)$	_	$T\nu$ I-iii \mathcal{O}_3^4 in 38	
		$S(\overline{3},3)_{+\frac{1}{3}}$	$\psi_{L,R}({f 3},{f 2})_{-rac{5}{6}}$	$ \begin{array}{l} \frac{1}{2}\mathcal{O}_{3a}(\alpha,\beta) - \frac{1}{2}\mathcal{O}_{3a}^{\text{ten.}}(\alpha,\beta) \\ -\frac{1}{2}\mathcal{O}_{3b}(\beta,\alpha) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\beta,\alpha) \end{array} $		$T\nu$ I-iii \mathcal{O}_3^5 in [38]	
#8	$(\overline{d_R}L_{\alpha})(L_{\beta})(QH)$	$S(3,2)_{+\frac{1}{6}}$	$\psi_{L,R}(3,1)_{+rac{2}{3}}$	$-rac{1}{2}\mathcal{O}_{3a}(lpha,eta)-rac{1}{2}\mathcal{O}_{3a}^{ ext{ten.}}(lpha,eta)$			$\begin{array}{c} T2_{2}^{\rm B}(m_{\nu})_{\alpha\neq\beta} \\ \mathcal{O}_{3}^{3} \text{ in } [38], \\ [43] \end{array}$
		$S(3,2)_{+\frac{1}{6}}$	$\psi_{L,R}({f 3},{f 3})_{+rac{2}{3}}$	$ \begin{array}{l} \frac{1}{2}\mathcal{O}_{3b}(\alpha,\beta) + \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\alpha,\beta) \\ + \frac{1}{2}\mathcal{O}_{3b}(\beta,\alpha) - \frac{1}{2}\mathcal{O}_{3b}^{\text{ten.}}(\beta,\alpha) \end{array} $		$\mathbb{T}\nu$ I-iii \mathcal{O}_3^6 in [38]	
#9	$(L_{\alpha}H)(L_{\beta})(\overline{d_R}Q)$	$\psi_R(1,1)_0$	$S(1,2)_{+\frac{1}{2}}$	$\mathcal{O}_{3b}(\beta, \alpha)$	type I		
		$\psi_R(1,3)_0$	$S(1,2)_{+\frac{1}{2}}$	$\mathcal{O}_{3a}(lpha,eta)+\mathcal{O}_{3b}(lpha,eta)$	type III		

[Helo, Hirsch, Ota, 1602.03362]

Diagrams continuum: attach external fields Lorentz invariance fixes the mediator to be scalar or vector by chirality of external fermions

Cl	assify	/ 0 v	ββ	ope	rators
----	--------	--------------	----	-----	--------

0 uetaeta decay operators	External fields
$\mathcal{O}_1^{SR}, \; \mathcal{O}_2^{SR}$	$\overline{Q}, Q, \bar{u}_R, d_R, \overline{\ell}, \ell^c$
$\mathcal{O}^{SR}_3, \; \mathcal{O}^{SR}_4$	$Q, Q, \bar{u}_R, \bar{u}_R, \bar{\ell}, \ell^c$
$\mathcal{O}_5^{SR}, \; \mathcal{O}_6^{SR}$	$\overline{Q}, \overline{Q}, d_R, d_R, \overline{\ell}, \ell^c$
\mathcal{O}_7^{SR}	$\bar{u}_R, \bar{u}_R, d_R, d_R, \bar{e}_R, e_R^c$
$\mathcal{O}^{SR}_{8}, \; \mathcal{O}^{SR}_{9}$	$\overline{u}_R, \overline{Q}, d_R, d_R, \overline{\ell}, e_R^c$
$\mathcal{O}^{SR}_{10}, \; \mathcal{O}^{SR}_{11}$	$\bar{u}_R, \bar{u}_R, Q, d_R, \bar{\ell}, e_R^c$
	$\begin{array}{c} 0\nu\beta\beta \; {\tt decay \; operators} \\ \mathcal{O}_1^{SR}, \; \mathcal{O}_2^{SR} \\ \mathcal{O}_3^{SR}, \; \mathcal{O}_4^{SR} \\ \mathcal{O}_5^{SR}, \; \mathcal{O}_6^{SR} \\ \mathcal{O}_7^{SR} \\ \mathcal{O}_8^{SR}, \; \mathcal{O}_9^{SR} \\ \mathcal{O}_{10}^{SR}, \; \mathcal{O}_{11}^{SR} \end{array}$

• A large number of possible diagrams

 \mathcal{O}^{SR}_i N2N3 | N4 | N5 | N1 N6TOPO $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ $N_{-}0_{-}1_{-}1$ Tree $\overline{6}$ $\overline{18}$ $\overline{6}$ N-0-2-1 $\overline{5}$ $\overline{6}$ $\overline{12}$ One-loop $\overline{48}$ N-1-6-1

The redundant diagrams should be removed.