

Status and Plan of MDI WP towards CEPC Detector Ref-TDR

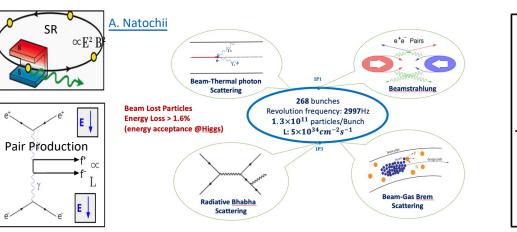
Haoyu SHI

On Behalf of the CEPC MDI&Lumi WP of Detector Ref-TDR

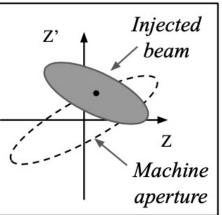
CEPC Day 2024.4.23

MDI+LumiCal

- Interface region with Acc.(Discussion when needed)
- Beam Induced Backgrounds
 - Estimation(Simulation) of Impacts and Radiation Environment
 - Software Upgrade/Migration
 - Validation and optimization of the Codes/Results
- LumiCal
 - Detector Design of the LumiCal
 - Detector Technology/Electronics/Readout...
 - Software/Simulation
- Optimization of Interaction Region/MDIInterference with other detectors/acc components
 - Detailed design on IR components as a system
 - Shielding for the detectors/detector hall
- Key Technology Issues:
 - Gold Coating
 - The manufacture of Beryllium pipe, including the welding with Al.


Background Estimation

A. Natochii


• Single Beam

- Touschek Scattering
- Beam Gas Scattering(Elastic/inelastic)
- Beam Thermal Photon Scattering
- Synchrotron Radiation
- Luminosity Related
 - Beamstrahlung
 - Radiative Bhabha Scattering
- Injection

Photon BG

Beam Loss BG

Injection BG

Background	Generation	Tracking	Detector Simu.	
Synchrotron Radiation	BDSim	BDSim/Geant4	<u>Mokka/CEPCSW/FLU</u> <u>KA</u>	
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH[Ref]			
Beam-Gas Bremsstrahlung	PyBGB[Ref]			
Beam-Gas Coulomb	BGC in <u>SAD</u>	SAD		
Radiative Bhabha	BBBREM			
Touschek	PyTSC			

- One Beam Simulated
- Simulate each background separately
- Whole-Ring generation for single beam BGs
- Multi-turn tracking(1000 turns)
 - Using built-in LOSSMAP
 - SR emitting/RF on
 - Radtaper on
 - No detector solenoid yet(Z updating)

2024/4/23

- Estimation of Impacts and Radiation Environment(50MW)
 - First Preliminary version: Using existing geometry in CEPCSoft with beam pipe and inner vertex updated; Focusing on Higgs/Z of vertex; without any safety factor – Finished
 - Implementing BG Simulation in CEPCSW(Generator-like): Before the end of June
 - Second Preliminary version: Using new tool/geometry; all 4 modes; without any safety factor – Late July/Early August
 - Optimization of the IR layout/configuration...(need help from all sub-D)
 - Final Ref-TDR version: Based on CEPCSW; all 4 modes; with optimized safety factor if possible-- Late October/Early November
- Offering BG samples for mixing/detector optimization: when needed, data saved as database, mixing in hit level
- Validation of the tool/simulation: Using BII/BIIU this year.
- Shielding design will be performed when the simulation was done.

Status – Beam Induced Backgrounds

- BG Simulation using CEPCSoft: Almost Finished except for SR.
 - Results in root file of Histogram2D, higgs/z-pole mode would be available:
 - /cefs/higgs/shihy/work/cepc_bkg/Results/Ref-TDR/20240312/Higgs(Z)/*.root(available when exists)
 - Hit density in number/cm^2/BX
 - TID in kRad/yr
 - 1 MeV Silicon neutron eq. flux in number/cm^2/yr
 - Z-pole's beamloss was in 3T solenoid, which would be fixed soon.
 - The results from pair could be used as reference, from beam loss should not(too high, more mitigation needed)

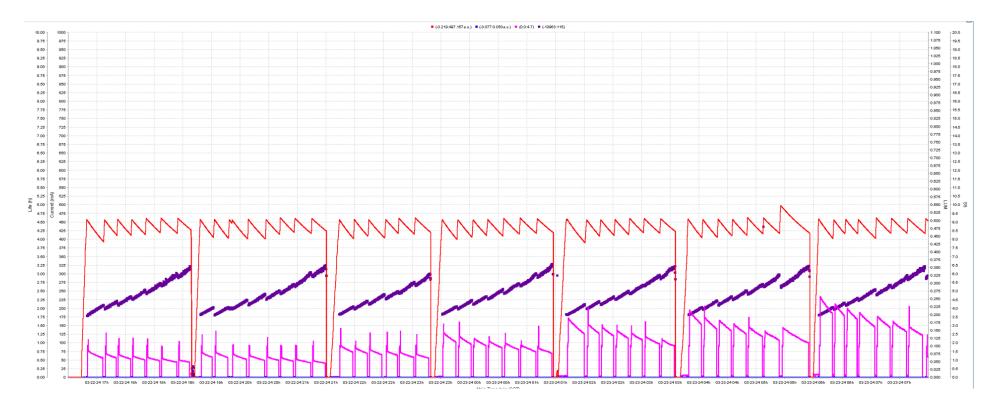
Total.root	BeamLoss.root	BGB.root
		BTH.root
		BGC.root
		TSC.root
	Pairs.root	Paris.root

Status – Beam Induced Backgrounds

- BG Code migrating to CEPCSW:
 - Generation/Tracking: Based on the latest TDR lattice, without Solenoid in Tracking Tool(SAD).
 - All the results would be converted to ROOT file
 - Plan to implement Solenoid when the Geometry fixed, and tool check finished.
 - Noise Estimation Using the hit information directly from CEPCSW:
 - Baseline: Hit Level, Perform the simulation when the geometry fixed and generation finished
 - Alternative: Generator Level, sample available soon. Algorithm under development
 - Thanks for the help from Tao, Zhan and Fangyi.
 - Radiation Environment Estimation Using the information from CEPCSW/FLUKA:
 - CEPCSW Code developing and prepare to be validated: Thanks for the help from Guangyi.
 - FLUKA Geometry updating: Could be finished soon when the final geometry fixed.

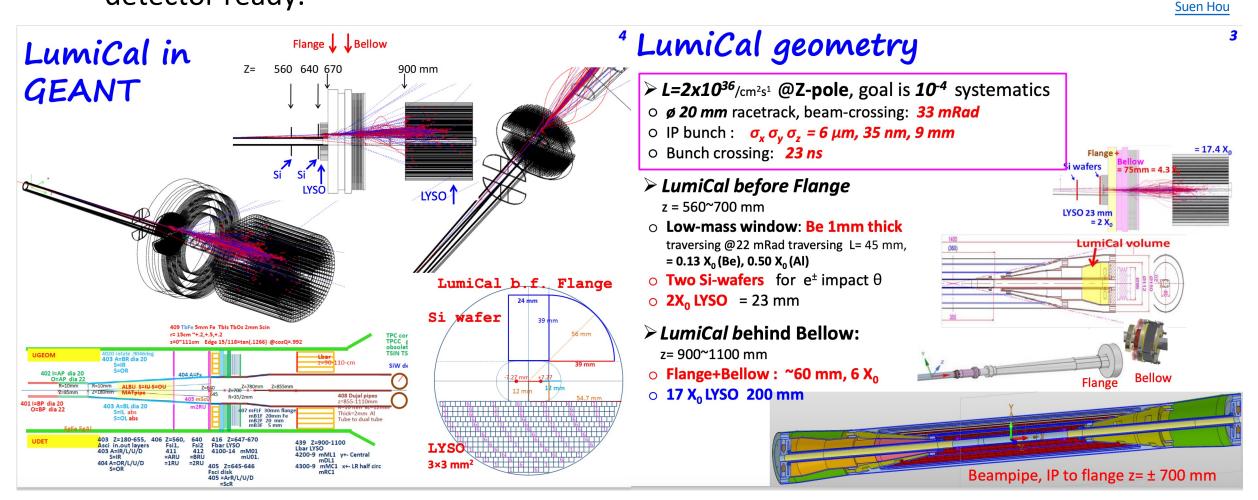
Status – Beam Induced Backgrounds

• Current Status towards Second Version(Based on CEPCSW):


Background	Mode	Generation	Tracking	Noise Estimation	Rad. Da. Esti.	Rad. Env. Esti.
Synchrotron Radiation	Higgs	To do	To do	Code Implementing/ Geometry UpdatingCode Implementing/Val idating		
	Z	To do	To do			
Beamstrahlung/Pair Production	Higgs	Done	-			
	Z	Done	-			
Beam-Thermal Photon	Higgs	Done	Done w.o. Sol			
	Z	Done	Done w.o. Sol			
Beam-Gas Bremsstrahlung	Higgs	Done	Done w.o. Sol		Code	
	Z	Done	Done w.o. Sol			Implementing/Val idating
Beam-Gas Coulomb	Higgs	Done	Done w.o. Sol			
	Z	Done	Done w.o. Sol			
Radiative Bhabha	Higgs	Done	-			
	Z	Doing	-			
Touschek	Higgs	Doing	To do			
	Z	Done	Done w.o. Sol			

Status - Experiment at BEPCII/BESIII

- Performed new run of BG Experiment at BEPCII/BESIII last month to understand the performance of the movable collimators.
- We plan to simulate backgrounds at BIIU using the same code/methods at CEPC and validate the simulation.



 After lots of iteration(>10 times) in last three years, currently we have baseline detector ready.

- Regular Meeting: Tuesday afternoon.
- Requirements and status of LumiCal.
 - The precision requirement form physics kept same as 1e-4.
 - Therefore, the requirement of the position measurement should not higher than 1 micro. Perhaps the optical survey and monitoring could meet this requirement, more study needed.
 - The understanding of different generator is on going.
 - The Geometry Updating and Full Simulation is on going:
 - The crystal part of the design is ongoing, together with the implementation of the geometry into CEPCSW.
 - The design of the silicon part is also ongoing, the help from other silicon detector group may be needed when we figure out the requirements.
 - We may also need novel ideas on the luminosity measurement together with other detectors.
 - The measurement of the luminosity change, and position of colliding is also need(Fast Lumi), this topic will be addressed together with accelerator colleagues.
 - The optimization and interference study will be performed together with det. Simulation.

Status – Overall design/optimization of IR

- A regular meeting with acc. People will be held at Thursday morning, minutes Link: <u>CEPC MDI Meeting - HedgeDoc (ihep.ac.cn)</u>
- The change of detector size may affect the design of accelerator components. A complete design of IR including detector/accelerator components are needed.
 - The detector size is almost determined, re-design of IR components needed.
 - Start from magnets and cryo-module. Already begun.
 - The change of the solenoid could affect the design of the anti-solenoid
 - After the individual design of solenoid/anti-solenoid, the joint optimization of the magnet and estimation of magnetic field near cyro-module will be provided.
 - The joint design of croy-module/inside components/lumical/beampipe also needed.
- The level of beam induced background is still high at least at Z mode.
 - More mitigation methods like collimators would be needed.

TOC of Ref-TDR

- One whole Chapter(same with CDR): Machine Detector Interface and Luminosity Detectors (Haoyu/Suen/Sha)
 - Introduction & Requirements
 - IR Layout(Haoyu/Sha/Quan/Haijing)
 - Key design/parameters(beampipe, final focusing, etc..)(Haoyu/Sha/....)
 - Detector/IR Backgrounds(Haoyu)
 - Introduction
 - Shielding Design/mitigation methods
 - Estimation
 - Luminosity Measurement System(Suen/Lei/Weiming)
 - Summary & Outlook
 - Ref. List

Thank You

Backup