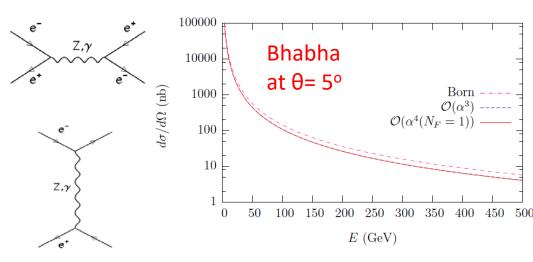
Z-pole event pileup estimation

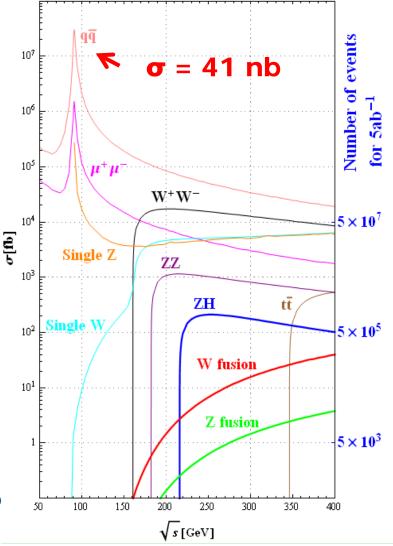
Suen Hou suen@sinica.edu.tw

2024/04/30

- 1 Bhabha events on LYSO cells ($3x3mm^2$) pile-up rate $^{\sim}1x10^{-4}$ at low- θ edge
- 2 Z lineshape $Z \rightarrow qq$ pile-up rate (4π coverage) $^{\sim}1x10^{-3}$
- → Resolve BCID, inner ECAL layers,
 SiPM do High-gain + 3-bit (8 levels) comparator

Cross-section

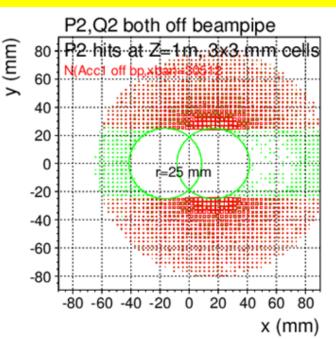

Z-lineshape


$$e^+e^- \rightarrow Z \rightarrow q\bar{q}$$

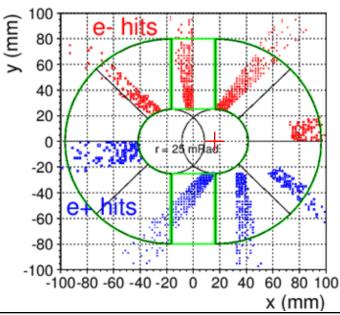
Luminosity by Bhabha

$$e^+e^- \rightarrow e^+e^-$$

$$\mathcal{L} = rac{1}{arepsilon} rac{N_{
m acc}}{\sigma^{
m vis}} \quad \sigma = rac{16\pilpha^2}{s} \cdot \left(rac{1}{ heta_{min}^2} - rac{1}{ heta_{max}^2}
ight)$$



hep-ph/0411321 NPB 716 (2005) 280


BHLUMI X-section, racetrack @CEPC

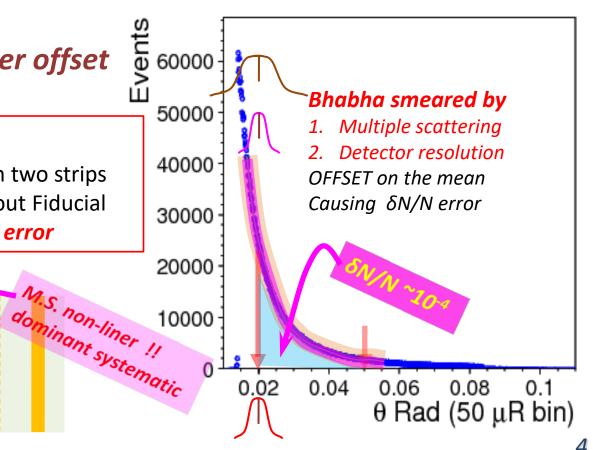
Acceptance @z=1m r>25 mm, |y|>25 mm

LAB frame e⁺, e⁻ detected @ Z=1000 mm

e⁺, e⁻ back-to-backSymmetric toout-going pipe center

at Z = 1000 mm

LAB ONE e ⁺ or e [−] detected		LAB both e ⁺ , e [−] detected	
θ>15 mRad	θ>15mR & y >15mm	θ>15 mRad	θ>15mR & y >15mm
395.3	255.9	257.8	245.9
θ>25 mRad	θ>25mR & y >25mm	θ>25 mRad	θ>15mR & y >25mm
133.5 nb	ce _{track} 81.8 nb	85.4 nb	78.0 nb
θ>30 mRad	θ>30mR & y >30mm	θ>30 mRad	θ>30mR & y >30mm
87.2	51.8	54.9	49.1 <i>3</i>


Systematics against $\delta L/L \sim 10^{-4}$

- δN/N ~10⁻⁴ in fiducial & window
- 1. Det. Position offset
- 2. Multi. Scattering, det. Resolution **B-field helix**
- 3. Rad. Bhabha, preshower offset

Si-strip detector fiducial edge = central line between two strips Multi.Scattering → events flow in/out Fiducial → event counting error + geo error S. non-liner !!

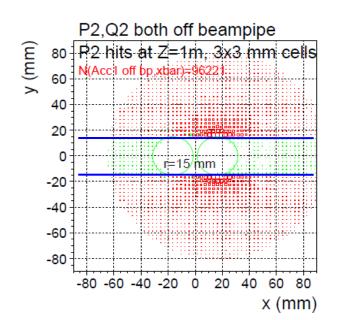
 $\delta L/L \sim 2 \delta \vartheta/\vartheta_{min}$ $\delta L/L < 10^{-4}$ for θ_{min} = 20 mRad

 $\rightarrow \delta \vartheta = 1 \mu Rad dr = 1 \mu m @ z = 1 m$

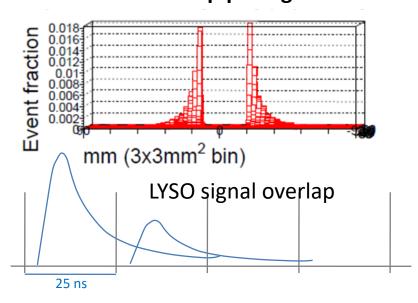
Bhabha pile-up rate @High-Lumi Z

- 1. High-Lumi Z (2021 design) $L_{max}/IP = 115 \times 10^{34}/cm^2s$
- 2. Bhabha both e^+ , e^- detected, X-sec = 246 nb Event rate = $(246 \times 10^{-33}) \times (115 \times 10^{34}) / \text{sec} = 115 \text{ kHz}$
- 3. Event rate / 25 ns bunch crossing = 0.003 events /b.c.

4. Pile-up: next b.c., @adjacent cell in peak region


Pile-up Fraction = 0.018*6cells/2sides = 0.054

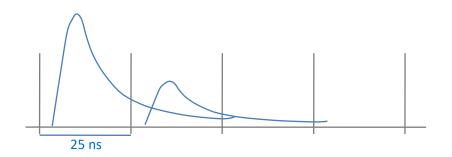
Pile-up event rate = $0.003*0.054 = 1.6 \times 10^{-4}$

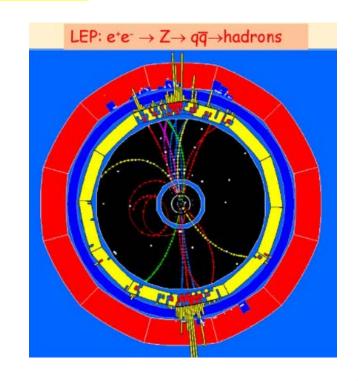

c.f. LEP L= 1x10³² X-sec= 100nb Rate= 10 Hz

in 3x3 mm² cells

50 GeV e- shower in 3x3 mm² cells

event fraction /(cell of 3x3mm²) maximum at beampipe edge = 0.018




Bhabha pile-up rate @High-Lumi Z

- 1. High-Lumi Z (2021 design) $L_{max}/IP = 115 \times 10^{34}/cm^2s$
- 2. $Z \rightarrow q\bar{q}$, X-sec = 41 nb Event rate = $(41x10^{-33}) \times (115 \times 10^{34})$ /sec = 47 kHz bunch cross = 40 MHz
- 3. Event rate / 25 ns bunch crossing = **0.001 events /b.c.**
- 4. next b.c. having a $Z \rightarrow q\bar{q}$

Pile-up rate 4π coverage $\sim 1 \times 10^{-3}$

if BCID not identified
○ pileup of two 2-jets → 4-jet
○ rare decay precision ~1x 10-3

