

Structure of Hypernuclei and AN tensor force

H. Tamura Tohoku University

Contents

1. Introduction to hypernuclear γ spectroscopy

2. ΛN spin-dependent interaction and ΛN tensor force

- **3. Suggestions for future**
- 4. Summary

Introduction

KEK E419 (1998.7)

World of matter made of u, d, s quarks

by M. Kaneta inspired by HYP06 conference poster

Motivation of Hypernuclear γ Spectroscopy

Baryon-Baryon interactions

- ΛN spin-dependent (spin-spin, spin-orbit, tensor) interactions, ΛN-ΣN interaction
- Understand short-range nuclear forces in terms of quarks
- Necessary to understand high density nuclear matter and strangeness mixing in neutron stars

Impurity effects in nuclear structure

 Changes of size/shape, symmetry, cluster/shell structure, collective motion

Nuclear medium effects of baryons

Probed by hyperons free from Pauli effect

Ge detctor array: Hyperball

Constructed by Tohoku/ KEK/ Kyoto in 1998

 Large acceptance for small hypernuclear γ yields
 Ge (r.e. 60%) x 14
 Ω ~ 15%, ε ~ 3% at 1 MeV

High-rate electronics for huge background

 BGO counters for π⁰ and Compton suppression

Co dotetor array: Hyperball

Upgraded to Hyperball2 in Tohoku (2005~) Efficiency 2.4% -> ~4%

Hypernuclear γ-ray data (2010)

Hypernuclear γ-ray data (2010)

2. AN spin-dependent interaction and AN tensor force

BNL E930 ('01) (2001. 8~12)

<u>AN spin-dependent interactions</u>

Low-lying levels of Λ hypernuclei

Example: ${}^{16}_{\Lambda}$ O γ -rays from 16 O (K⁻,

Ukai et al., PRL 93 (2004) 232501; Ukai et al., PRC 77 (2008) 54315.

Observation of Hypernuclear Fine Structure

BNL E930 (AGS D6 line + Hyperball)

Features of ΛN interaction "Nuclear force without pion"

Experimentally Inuclear force

- Spin-averaged ΛN force strength weaker (~2/3) than NN
- All the Λ-spin-dependent forces are small.
 Spin-spin force 1/10 of NN
 Spin-orbit force 1/40 of NN
 N
 N
 N
 Λ

Theoretically

- A has no isospin (ud quarks couple to S=0,T=0)
- -> one π/ρ exchange forbidden. Main sources are K, σ, ω exch. Shorter range than NN

Weaker tensor force than NN

• $\Sigma - \Lambda$ coupling force (2π exchange) from $\Sigma N - \Lambda N$ tensor force gives large effects : $_m_{\Sigma} - m_{\Lambda} < m_{\Delta} - m_N$

-> <u>ANN 3 body force is</u> more important than NNN

Can we use a A to investigate the effect of the tensor force to the nuclear structure?

Baryon mixing and three-body force in hypernuclei

<u>Effective ΛN tensor force</u> for p-shell hypernuclei in the shell model

 Large contribution in doublet spacings of p_{1/2} shell hypernuclei

j j coupling : $\Delta E = -1/3\Delta + 4/3 S_A + 8 T$, Shell model calc ${}^{16}{}_{A}O$: $\Delta E = -0.38 \Delta + 1.38S_A + 7.85T$ T is determined only by ${}^{16}{}_{A}O_{gs}(1^{-},0^{-})$ spacing but consistent for other level energies.

Some contribution of ΛN tensor force to the Λ's LS splitting exists.

Shell model calc ${}^{9}_{\Lambda}Be: \Delta E = -0.04\Delta + 2.46S_{\Lambda} + 0.99T$

<u>Millener's approach for $\Lambda N-\Sigma N$ coupling force</u>

Millener, Lecture Notes in Physics 724, Springer (2007) p.31

 $u = \langle p_N^{A-5} S_{\Sigma}(J) | V | p_N^{A-5} S_{\Lambda}(J) \rangle$ V: NSC97f through G-matrix (spin-dependent) Energy shift $(\Lambda \Sigma) = \alpha^2 I (m_{\Sigma} - m_{\Lambda})$ ΛΝ $(S_N^4 S_{\Sigma} - S_N^4 S_A \text{ coupling has no spin-dependence})$ \sum_{π} + and can be incorporated in effective 2B AN central force.) Ν N N 1/2+,T=1 $\mathbf{0}^+$ -98 keV S=1,T=0 **T=1** S=3/2 <u>1.30/</u> + 2.17S₁ + 0.02S_N - 2.38T $7/2^{+}$ S=0.T=1 $5/2^{+}$ -74 **T=0** <u>1.46</u><u>/</u> + .038S_/ +0.01S_N - 0.29T S=1,T=0 $3/2^+$ -6 1+ S=1/2 $1/2^{+}$ ⁶Li -78 $\Lambda\Sigma$ from NSC97f

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

M	illener's para		
A=7~9 $\Delta = 0.430$	$S_{\Lambda}=-0.015$	$S_N = -0.390$	$T=0.030~{ m m MeV}$
A=10~16 $\Delta=0.330$	$S_{\Lambda}=-0.015$	$S_N = -0.350$	$T=0.0239~{ m MeV}$

			1			•			
doublet spacing		Contribution of each term (keV)					keV		
	J_u^{π}	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	Т	ΔE^{th}	ΔE^{exp}
7 Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
7 Li	$7/2^+$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ _A Li	2-	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ _A Li	$3/2^{+}_{2}$	$1/2^+$	-80	231	-13	-13	-93	-9	
${}^{9}_{\Lambda}\mathrm{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}B$	2^{-}	1^{-}	-15	188	-21	$^{-3}$	-26	120	< 100
$^{11}_{\Lambda}B$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^+$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2-	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2^+_1$	44	244	34	$^{-8}$	-214	99	
$^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^+_2$	65	451	$^{-2}$	-16	-10	507	481
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}O$	2-	1^{-}_{2}	92	207	-21	1	-41	248	224

Calculated from G-matrix using $\Lambda N - \Sigma N$ force in NSC97f

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Millener's parameter set

A=7~9

Agreement looks almost perfect with the $\Sigma\Lambda$ coupling effect ! -> NSC97f seems good for $\Sigma\Lambda$ coupling (but we need more data).

doublet spacing		Contribution of each term (keV)					keV		
	J_u^{π}	J_l^{π}	ΛΣ	Δ	S_{Λ}	S_N	Т	ΔE^{th}	ΔE^{exp}
7Li	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
7 Li	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
⁸ _A Li	2-	1-	151	396	-14	-16	-24	450	(442)
⁹ _A Li	$5/2^{+}$	$3/2^{+}$	116	530	-17	-18	-1	589	
⁹ _A Li	$3/2^{+}_{2}$	$1/2^{+}$	-80	231	-13	-13	-93	-9	
${}^9_{\Lambda}\mathrm{Be}$	$3/2^{+}$	$5/2^{+}$	-8	-14	37	0	28	44	43
$^{10}_{\Lambda}B$	2^{-}	1^{-}	-15	188	-21	-3	-26	120	< 100
11 B	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}B$	$3/2^{+}$	$1/2^+$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}C$	2-	1-	61	175	-12	-13	-42	153	161
$^{15}_{\Lambda}N$	$1/2^+_1$	$3/2_1^+$	44	244	34	$^{-8}$	-214	99	
$^{15}_{\Lambda}N$	$3/2^{+}_{2}$	$1/2^+_2$	65	451	$^{-2}$	-16	-10	507	481
$^{16}_{\Lambda}O$	1-	0-	-33	-123	-20	1	188	23	26
16 O	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

Calculated from G-matrix using $\Lambda N-\Sigma N$ force in NSC97f

D.J. Millener, J.Phys.Conf.Ser. 312 (2011) 022005

Nijmegen meson-exchange models

 $\Delta = 0.33 - 0.43 \text{ MeV} \implies NSC97f \text{ selected} \text{ (consistent with } {}^{4}_{\Lambda}\text{H}(1^{+},0^{+})\text{)}$

=>

spin-orbit:

S_A = -0.01 MeV (SLS+ALS)

(SLS-ALS)

tensor:

T = 0.03 MeV

All Nijmegen models fail.

- Quark model looks OK.
- ${}^{9}_{\Lambda}$ Be = ααΛ model Hiyama et al., PRL 85 (2000) 270 Fujiwara et al. Prog.Part.Nucl.Phys.58 (2007) 439.

=> Nijmegen models OK

3. Suggestions for Future

Hyperball-J under assembly at Tohoku U. 2011.7

$\frac{28}{\Lambda}$ AI – spectroscopy by (e,e'K⁺)

Enriched ²⁸Si target 100 mg/cm² 30mA electron beam

> ral ²⁸Si target :m² 3ec π⁺ beam

$\frac{28}{\Lambda}$ AI – spectroscopy by (e,e'K⁺)

<u>Hypernuclear Spectroscopy</u> <u>using High Resolution Pion Line</u>

Hypernuclear Spectroscopy using High Resolution Pion Line Momentum dispersion matching 400 beam line proposed by H. Noumi (RCNP) 350 $\Delta E = 0.2 \text{ MeV}, 10^9 \text{ pions/s}$ 300 **Simulation** $\leftarrow \Delta E=1.5 \text{ MeV}, 10^7 \text{ pions/s by SKS}$ d, 250 HIHR Beam Line 200 PA 150 Precise single particle energies and LS splitting of Λ hypernuclei 100 **n-rich** Λ hypernuclei by (π^- ,K+) I. Σ hypernuclei (Coulomb assisted) 50 states) by (π^-, K^+) 0 -5 Weak decay and magnetic moment 15 20 10 KxMeV

Single particle energy of Λ

Experimental data in future

- E(s_A , p_A , d_A , f_A ,...) < 0.1 MeV accuracy (e,eK+), high resol. (π^+ ,K+)
- **E** $(s_A) E(p_A), E(p_A/2_A) E(p_A/2_A) < 0.01 \text{ MeV accuracy}$

< 0.01 MeV accuracy γ spectroscopy for E1($p_A \rightarrow s_A$)

- Test of Bethe-Goldstone theory (Origin of single particle motion) m*_N is not measurable, but m*_A is. Understand effective interactions quantitatively
- Origin of nuclear LS splitting (2-body LS + tensor + ?)
- Probe hadron modifications in nuclear matter?
 (Baryons and bare nuclear forces may change in nucleus)

 theoretical challenge

Summary

- High-resolution γ spectroscopy has been applied to Λ hypernuclei with the dedicated Ge array, Hyperball / Hyperball2.
- Level schemes of most of the p-shell hypernuclei have been studied.
- The strengths of spin-dependent AN interactions have been derived and used to improve BB interaction models. Most of the observed levels are well reproduced by these spindependent interaction strengths.
- The small tensor force strength (and ΣN-ΛN coupling effects) from level energy data agree with those predicted from Nijmegen BB interaction models. ΛN tensor force is small and unique.
- Precise data on Λ hypernuclear levels, particularly Λ's single particle energies, can be used to investigate the role of the tensor force, 3-body force, and LS force in the LS splitting and the nuclear structure. --- EGG OF IDEA? Need theoretical help.