Recent developments in the strange production via hadron photoproductions "Progresses on Λ(1520) studies"

Nam, Seung-il (남승일,南昇日)

Korea Institute for Advanced Study (KIAS), Republic of Korea

This talk is based on SiN, A.Hosaka, H.-Ch.Kim, Phys.Rev.D71,114012 (2005) SiN, Phys.Rev.C81, 015201 (2010) SiN, C.W.Kao, Phys.Rev.C81,055206 (2010) SiN, B.G.Yu, Phys.Rev.C84, 025203 (2011)

Title

International symposium on frontiers in nuclear physics, 2-3 Nov 2011, Beihang Univ., China

What is Λ(1520)?

A(1520) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	$45 \pm 1\%$
Γ2	$\Sigma \pi$	$42 \pm 1\%$
3	Λππ	$10 \pm 1\%$
Γ4	$\Sigma(1385)\pi$	
Γ ₅	$\Sigma(1385)\pi(\rightarrow \Lambda\pi\pi)$	
Γ ₆	$\Lambda(\pi\pi)_{S-wave}$	
Γ ₇	$\Sigma \pi \pi$	$0.9\pm0.1\%$
Г ₈	$\Lambda\gamma$	$0.85\pm0.15\%$
Г9	$\Sigma^0\gamma$	

K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010)

Why is $\Lambda(1520)$ interesting in physics?

2) Proton-Neutron target asymmetry

There looks strong asymmetry between proton and neutron target data. - T.Nakano (RCNP) Phys. Rev. Lett. 103, 012001 (2009) [5 pages]

Near-Threshold Photoproduction of Λ (1520) from Protons and Deuterons

Abstract	References	Citing Articles (6)			
Download: PDF (215 kB) Export: BibTeX or EndNote (RIS)					
N. Muramatsu et al. LEPS Collaboration Show All Authors/Affiliations					
Received 12 April 2009; published 1 July 2009					

Photoproduction of Λ (1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8 LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward $K^{+/0}$ angles. This suggests the importance of the contact term, which coexists with *t*-channel *K* exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K^+ angles.

Why is $\Lambda(1520)$ interesting in physics?

2) Proton-Neutron target asymmetry

Phys. Rev. Lett. 103, 012001 (2009) [5 pages]

There looks strongNear-Threshold Photoproduction of Λ (1520) from Protons andasymmetry betweenDeuterons

were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward $K^{+/0}$ angles. This suggests the importance

- T.Nakano (RCNP)

Show All Authors/Affiliations

Received 12 April 2009; published 1 July 2009

Photoproduction of Λ (1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8 LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward $K^{+/0}$ angles. This suggests the importance of the contact term, which coexists with *t*-channel *K* exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K^+ angles.

Why is $\Lambda(1520)$ interesting in physics?

3) Dynamical generation of $\Lambda(1520)$ as a $\pi\Sigma(1385)$ bound state

A good method to determine K*N Λ (1520) coupling

Roca et al., nucl-th:0411155 Hyodo et al., Phys.Rev.C73:035209,2006

2) Strong correlation with the exotic pentaquark $\Theta(1540)$

 $\Theta(1540)$ production enhanced at which $\Lambda(1520)$ produced by LEPE collaboration

Boyarski et al for SLAC. PL34B, 547 (1971)

Barber et al for LAMP2 collaboration, ZP C7, 17 (1980)

Daresbury tagged photon beam

LAMP2 multiparticle spectrometer

Barber et al for LAMP2 collaboration, ZP C7, 17 (1980)

Decay K⁻ distribution angle analysis on Gottfried-Jackson frame

Barrow et al. For CLAS collaboration, Phys.Rev.C64:044601,2001

Barrow et al. For CLAS collaboration, Phys.Rev.C64:044601,2001

Seung-II Nam

Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan Department of Physics and Nuclear Physics & Radiation Technology Institute (NuRI), Pusan National University, Busan 609-735, Republic of Korea

Atsushi Hosaka[†]

Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

Hyun-Chul Kim[‡]

Department of Physics and Nuclear Physics & Radiation Technology Institute (NuRI), Pusan National University, Busan 609-735, Republic of Korea

We were motivated by the experiments, which had not been analyzed theoretically: initiative theoretical work for $\Lambda(1520)$

What production mechanism governs the reaction process?

K*-exchange contribution really dominates the process?

These four, s,u,t(K),contact, are necessary to satisfy the WT identity No resonant contributions considered (Y* and N*)

Scattering amplitude evaluated by effective Lagrangian approach

Rarita-Schwinger formalism for spin-3/2 fermion

Current-conserving form factor prescription

Hadrons: spatially extended particles \rightarrow spatial distribution

Photoprodcution of hadrons needs careful treatment of form factors to satisfy the current conservation, i.e. Ward-Takahashi identity

Form factor prescription suggested by Ohta, Workman, Haberzettl et al.

$$i\mathcal{M}_{\text{total}} = [i\mathcal{M}_{\text{contact}} + i\mathcal{M}_s^E + i\mathcal{M}_t^E + i\mathcal{M}_u^E]F_{\text{common}} + i\mathcal{M}_s^M F_s + i\mathcal{M}_u^M F_u + i\mathcal{M}_t^M F_t$$

Unpolarized results for $\Lambda(1520)$

Simple but important consequences of contact-term dominance

Contact-term dominance, caused by current conservation, crossing symmetry and form factor on-shell condition, results in

Possible large target asymmetry: $\sigma_{proton} \gg \sigma_{neutron}$

Theoretically, we observe $\sigma_{\text{proton}} / \sigma_{\text{neutron}} \sim 20$

Simple but important consequences of contact-term dominance

Each contribution from $\Lambda(1520)$ in $|S_z|=3/2$ and $|S_z|=1/2$

Even without K*, contact term reproduces the data

Experimental evidence "|Sz|=3/2" dominance may not support K* dominance

A "contradictory" theoretical work after ours (2005)

Phys. Rev. C 72, 035206 (2005) [16 pages]

Coherent Θ^+ and $\Lambda(1520)$ photoproduction off the deuteron

 Abstract
 References
 Citing Articles (12)

 Download: PDF (368 kB)
 Export: BibTeX or EndNote (RIS)

A. I. Titov^{1,2,*}, B. Kämpfer^{1,3}, S. Daté⁴, and Y. Ohashi⁴

¹Forschungzentrum Rossendorf, D-01314 Dresden, Germany
 ²Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna R-141980, Russia
 ³Institut für Theoretische Physik, TU Dresden, D-01062 Dresden, Germany
 ⁴Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto Mikazuki-cho Sayo-gun Hyog

It was suggested that K*-exchange dominates the process

This theoretical suggest leads to i) No (negligible) target asymmetry ii) Large $K^*N\Lambda$ coupling

It was rather (un)officially said by LEPS collaboration (Japan) from 2006:

"Neutron target data looks much smaller than proton (preliminary)"

A theoretical estimation for K*N Λ coupling using a chiral unitary model

Phys. Rev. C 73, 035209 (2006) [8 pages]

Coupling of $\overline{K}^* N$ to the $\Lambda(1520)$

 Abstract
 References
 Citing Articles (10)

 Download: PDF (174 kB)
 Export: BibTeX or EndNote (RIS)

 T. Hyodo^{1,*}, Sourav Sarkar^{2,†}, A. Hosaka¹, and E. Oset²

 ¹Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

²Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia, Spain

$$|g_{\Lambda^*\bar{K}^*N}| \sim 1.5$$

which is ~ 10 times smaller than $KN\Lambda$: No significance of K^{*}-exchange

Several private communications for 2007–2008 with LEPS at SPring-8 (Japan) and CLAS at Jefferson laboratory (USA)

Contact-term dominance prevails?

Needs more exp. Data: Neutron!

Neutron (deuteron) data under analysis by LEPS collaboration (2008 ~ 2009) International symposium on frontiers in nuclear physics, 2-3 Nov 2011, Beihang Univ., China Experimental and theoretical studies on $\Lambda(1520)$: 2008

A new theoretical work vindicates the contact-term dominance

Phys. Rev. D 77, 034001 (2008) [12 pages]

Photon induced $\Lambda(1520)$ production and the role of the K^* exchange

Abstract	References	Citing Articles (18)
Download: PDF (445 k	B) Export: BibTeX or Er	ndNote (RIS)

Hiroshi Toki^{1,2}, Carmen García-Recio¹, and Juan Nieves¹ ¹Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071, Spain ²Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

Using the quark-gluon string model employed for $K^*N\Lambda$ coupling

Again, it was observed that $K^*N\Lambda/KN\Lambda^{\sim}0.1$

Experimental data for neutron (deuteron) target becomes more urgent!!!!

Finally, we have the experimental data in 2009, and it reveals...

Phys. Rev. Lett. 103, 012001 (2009) [5 pages]

Near-Threshold Photoproduction of Λ (1520) from Protons and Deuterons

Abstract References Citing Articles (6)
Download: PDF (215 kB) Export: BibTeX or EndNote (RIS)

N. Muramatsu et al. LEPS Collaboration

Show All Authors/Affiliations

Received 12 April 2009; published 1 July 2009

Photoproduction of Λ (1520) with liquid hydrogen and deuterium targets was examined at photon energies below 2.4 GeV in the SPring-8 LEPS experiment. For the first time, the differential cross sections were measured at low energies and with a deuterium target. A large asymmetry of the production cross sections from protons and neutrons was observed at backward $K^{+/0}$ angles. This suggests the importance of the contact term, which coexists with k-channel K exchange under gauge invariance. This interpretation was compatible with the differential cross sections, decay asymmetry, and photon beam asymmetry measured in the production from protons at forward K^{*} angles.

By a simple (flavor symmetric) Consideration: $\sigma_p + \sigma_n \sim \sigma_d$,

But data shows $\sigma_p \sim \sigma_d \parallel \parallel$

Hence, we conclude $\sigma_p \gg \sigma_n$

Present status and Next step

Successful theoretical studies for the hadron photoproductions for low E In collaboration with B.G.Yu, C.W.Kao, A.Hosaka, and H.-Ch.Kim.

Experimental supports for our theoretical framework

Experimental upgrades (LEPS2 & CLAS12) call for modification of theory

Motivations

High E photoproduction needs inclusion of Regge trajectory (well studied) T. Rege, Nuovo Cim. 14, 951 (1959). M. Vanderhaeghen, M. Guidal and J. M. Laget, Phys. Rev. C 57, 1454 (1998)

Low-E and high-E physics must be continuous!!

Idea: smooth interpolation of the energy regions with and without Regge

Low-E	High-E
	Ingi L

Present status and Next step

Successful theoretical studies for the hadron photoproductions for low E In collaboration with B.G.Yu, C.W.Kao, A.Hosaka, and H.-Ch.Kim.

Experimental supports for our theoretical framework

Experimental upgrades (LEPS2 & CLAS12) call for modification of theory

Motivations

High E photoproduction needs inclusion of Regge trajectory (well studied) T. Rege, Nuovo Cim. 14, 951 (1959). M. Vanderhaeghen, M. Guidal and J. M. Laget, Phys. Rev. C 57, 1454 (1998)

Low-E and high-E physics must be continuous!!

Idea: smooth interpolation of the energy regions with and without Regge

Low-E

High-E

Mesonic Regge trajectories

Mesons, exchanged in t-channel, in terms of M² and J

Phenomenological treatment of Meson exchanges at high energy

$$s \rightarrow \infty$$
 and (|t|,u) \rightarrow C

t-channel Feynman propagators, replaced by Regge ones

Smooth interpolation of Feynman and Regge at some energy point?

$$\frac{1}{t - M_K^2} \rightarrow \mathcal{D}_K = \left(\frac{s}{s_0}\right)^{\alpha_K} \frac{\pi \alpha'_K}{\Gamma(1 + \alpha_K) \sin(\pi \alpha_K)},$$
$$\frac{1}{t - M_{K^*}^2} \rightarrow \mathcal{D}_{K^*} = \left(\frac{s}{s_0}\right)^{\alpha_{K^*} - 1} \frac{\pi \alpha'_K}{\Gamma(\alpha_K) \sin(\pi \alpha_K)}.$$
$$\alpha_K = 0.70 \,\text{GeV}^{-2} \left(t - M_K^2\right),$$
$$\alpha_{K^*} = 1 + 0.85 \,\text{GeV}^{-2} \left(t - M_{K^*}^2\right).$$

Interpolation of Regge and Feynman propagators

Phenomenological interpolation ansatz introduced

 $F_{c,v} \to \bar{F}_{c,v} \equiv \left[(t - M_{K,K^*}^2) \mathcal{D}_{K,K^*} \right] \mathcal{R} + F_{c,v} (1 - \mathcal{R}), \quad \mathcal{R} = \mathcal{R}_s \mathcal{R}_t,$ High-E : Regge propagator Low-E : Regge propagator

$$\mathcal{R}_s = \frac{1}{2} \left[1 + \tanh\left(\frac{s - s_{\text{Regge}}}{s_0}\right) \right], \quad \mathcal{R}_t = 1 - \frac{1}{2} \left[1 + \tanh\left(\frac{|t| - t_{\text{Regge}}}{t_0}\right) \right]$$

 $s \rightarrow \infty$ and $(|t|,u) \rightarrow 0$

Relevant parameters are determined by matching with data

Caution: No firm theoretical ground for the ansatz structure!!

Model A with Born-Regge interpolation and Model B with simple Born

Interpolation becomes effective for higher E: Regge prevails

Double polarization for $\Lambda(1520)$ SiN, C.W.Kao, PRC81,2010

Polarization-transfer coefficients, Cx and Cz

Photon helicity transferred into possible Lambda(1520) spin states

Satisfying the collinear conditions

CLAS and LEPS will do this?: looks difficult (K.Hicks for CLAS)

Deeply related to the K⁻-decay angle distribution: spin states of $\Lambda(1520)$

 $\mathcal{F}_{K^-} = A \sin^2 \theta_{K^-} + B \left(\frac{1}{3} + \cos^2 \theta_{K^-} \right) \quad \text{Muramatsu et al. (LEPS), PRL103, 2009}$

If Lambda in 3/2, (A,B)=(1,0). Otherwise, (A,B)=(0,1): Spin statistics

Idea:
$$A = \frac{C_{z,3/2}}{C_{z,1/2} + C_{z,3/2}}, \quad B = \frac{C_{z,1/2}}{C_{z,1/2} + C_{z,3/2}}$$
 SiN, C.W.Kao, PRC81,2010

By seeing this, one can tell which contribution is important

Decay-angle distribution without K*

New CLAS data in progress (in private communication with Dr. Z.W.Zhao for CLAS)

(b) (a) 0.9 Barber et al. 0.85 0.75 0.75 0.65 0.65 0.55 0.45 0.45 0.85 0.75 0.65 0.55 0.45 0.45 0.45 135 .8 GeV. 20⁰ K⁻angle distribution 90 2.0 80 K⁻angle distribution 70 90 80 2.25 Ge 3.25 G 0.2 4.25 GeV 0.5 0.85 0.75 0.75 0.65 0.65 0.55 0.45 0.45 0.45 -0.5 -1 1.2K⁻-angle distribution 9.0 8.0 K⁻-angle distribution 70 99 80 1.1 0.9 0.8 0.7 0.6 0.5 0.8 0.7 0.6 0.5 0.4 0.2 0.2 uramatsu *et al*. (c) (d) 0 0 -0.5 0.5 -0.5 -1 0.5 -1 0 0 $\cos\theta_{\rm K}$ - $\cos\theta_{\rm K}$ -Backward Forward Experimental data reproduced qualitatively well

Decay-angle distribution without K*

New CLAS data in progress (in private communication with Dr. Z.W.Zhao for CLAS)

Experimental and theoretical studies on $\Lambda(1520)$: 2011 for Δ photoproduction

Same Regge-Born interpolation prescription for Δ photoproduction

SiN, B.G.Yu, PRC84, 025203 (2011)

Summary and Conclusion

 $\Lambda(1520)$ photoproduction investigated via effective Lagrangian method Contact-term dominance was proposed due to current conservation Resulting in target asymmetry: $\sigma_{\text{proton}} \gg \sigma_{\text{neutron}}$ Experimental and theoretical results support contact-term dominance Based on this, we suggested Regge-Born interpolation prescription This approach enables us to study low and high E regions simultaneously K⁻ decay angle distribution estimated by polarization transfer coefficients

reveals again the contact-term dominance ($K^*=0$)

Problems and Future perspectives

Problems

Present theoretical framework needs more contributions: nucleon and hyperon resonances, final-state interaction, higher orders, etc

Backward scattering analyses are not enough

No firm theoretical ground for the Regge-Born interpolating prescription

Future perspectives

Photoproduction with three-body final state, simulating experiments

 Λ (1520) electroproduction: under progress

Theoretical investigation for Regge-Born interpolation

International symposium on frontiers in nuclear physics, 2-3 Nov 2011, Beihang Univ., China

Finally...

