No-Core Monte Carlo Shell Model calculation for ¹⁰Be and ¹²Be low-lying spectra

Liu, Lang (刘朗)

School of Physics, Peking University

Collaborators:Takaharu Otsuka(Tokyo Univ.)Norikata Shimizu(Tokyo Univ.)Yutaka Utsuno(JAEA)Robert Roth(Darmstadt Univ.)

1-3 November 2011 International Symposium on Frontiers in Nuclear Physics

Outline

Introduction

Theoretical framework 1) Unitary Correlation Operator Method 2) Monte Carlo Shell-Model

> Results and discussion

Low lying spectra for ¹⁰Be and ¹²Be

> Summary and outlook

Outline

Introduction

Theoretical framework 1) Unitary Correlation Operator Method 2) Monte Carlo Shell-Model

Results and discussion Low lying spectra for ¹⁰Be and ¹²Be

> Summary and outlook

Introduction

- One of the major goals in nuclear physics is to understand the structure of nuclei starting from realistic nuclear interactions.
- In the last decades, many progresses have been made in obtaining an accurate representation of realistic nucleon-nucleon (NN) potentials. Argonne interaction, CD-Bonn interaction, Nijim I & II, N³LO ...
 - ✓ Wiringa, et al., PRC 1984; 1995; Machleidt, PRC 2001; Stoks, et al., PRC 1994; Entem and Machleidt, PRC 2003.
- By using these realistic NN interactions, nuclear *ab initio* calculations have been performed in light nuclei, e.g. Green's Function Monte Carlo (GFMC) A~12
 - ✓ Pieper and Wiringa, ARNP 2001; Pieper, et al., PRC 2002; Pieper, NPA 2005

No-Core Shell Model (NCSM) A~14

✓ Navrátil, et al., PRC 2000; JPG 2009; Caurier, et al., PRC 2002

Tensor Optimized Shell Model (TOSM) Li isotopes

Myo-san's talk yesterday

Introduction

> The direct application of these realistic *NN* potentials to many-body calculations, e.g. shell model calculation, is difficult.

- tensor correlation;
- ••
- The Unitary Correlation Operator Method (UCOM) is one of the methods to solve this problem by introducing a unitary transformation.
 - ✓ Feldmeier, *et al.*, NPA 1998;
 - ✓ Neff and Feldmeier, NPA 2003;
 - ✓ Roth, *et al.*, PPNP 2010

- huge Hamiltonian matrix dimension for medium and heavy nuclei, e.g. 10^{9~10} M-scheme dimension for medium-mass nuclei
- Monte Carlo shell model has been proposed to solve this problem by diagonalizing the Hamiltonian in a small subspace (~ 100 dimension), which are generated by a stochastic way.

✓ Otsuka, *et al.*, PPNP 2001

In this work

For the first time, we apply the MCSM to investigate ¹⁰Be and ¹²Be in an *ab initio* way.

Outline

> Introduction

- Theoretical framework
 1) Unitary Correlation Operator Method
 2) Monte Carlo Shell-Model
- Results and discussion Low lying spectra for ¹⁰Be and ¹²Be
- > Summary and outlook

UCOM

Introduction of unitary operator

$$\begin{array}{c} \text{Correlated} \\ |\Psi\rangle \& |\psi\rangle \\ \hat{B} \end{array} \begin{array}{c} \text{Unitary correlation operator} \\ |\Psi\rangle = C |\Phi\rangle \\ \hat{B} = C^{-1}BC \end{array} \begin{array}{c} \text{Uncorrelated} \\ |\Phi\rangle \& |\phi\rangle \\ B \end{array}$$

 $C = \exp\{-iG\} \quad G = \sum_{i < j}^{A} g(i, j) + three - body \ term + higher \ terms$

- Nuclear structures are greatly affected by two kinds of correlation:
 - 1) Short-range correlation;
 - 2) Tensor correlation.

$$C = C_{\Omega}C_r = \exp\left[-i\sum_{i< j} g_{\Omega,ij}\right] \exp\left[-i\sum_{i< j} g_{r,ij}\right]$$

Fitting Energy minimum point to determine 4 parameters in g_{Ω} and g_r

UCOM potential

Main idea of UCOM

 $\langle \Psi | H | \Psi' \rangle = \langle \Phi | C^{\dagger} H C | \Phi' \rangle = \langle \Phi | C^{-1} H C | \Phi' \rangle = \langle \Phi | \hat{H} | \Phi' \rangle$

Correlated Hamiltonian and the UCOM potential

$$\hat{H} = C^{\dagger}HC = C^{\dagger}(T + V_{real.})C
= \hat{T}^{[1]} + \hat{T}^{[2]} + \hat{V}^{[2]} = T_{int} + V_{UCOM}
T^{[1]} = T_{int.}$$

where any correlated operator is rewritten as:

$$\hat{B} = C^{-1}BC = \exp\{+iG\}B\exp\{-iG\}$$
$$= B + [G, B] + \frac{1}{2!}[G, [G, B]] + \cdots$$

Monte Carlo Shell Model

Imaginary-time evolution operator

 β is a real number, *H* is general time independent Hamiltonian

$$|\Phi\rangle = \sum_{i} c_i |k_i\rangle$$

E_i : i-th eigenvalue of H,
 |k_i> : its eigenfunction,
 c_i: amplitude.

Monte Carlo Shell Model

➢ For example, a simple Hamiltonian: $H = \frac{1}{2}VO^2$

$$e^{-\beta H} = e^{-\frac{1}{2}\beta VO^{2}}$$

$$Hubbard-Stratonovich (HS) transformation
$$e^{-\frac{1}{2}\beta VO^{2}} = \int_{-\infty}^{\infty} d\sigma_{\alpha} \sqrt{\frac{\beta |V|}{2}} e^{-\frac{\beta}{2}|V|\sigma_{\alpha}^{2}} e^{-\beta |V|\sigma_{\alpha}O}$$

$$e^{-\frac{1}{2}\beta VO^{2}} \approx \int_{MC:\sigma_{\alpha}}^{\infty} \sqrt{\frac{\beta |V|}{2}} e^{-\beta |V|\sigma_{\alpha}O}$$

$$e^{-\frac{1}{2}\beta VO^{2}} \approx \int_{MC:\sigma_{\alpha}}^{\infty} \sqrt{\frac{\beta |V|}{2\pi}} e^{-\beta |V|\sigma_{\alpha}O}$$

$$Monte Carlo sampling e^{-\beta H} |\Phi\rangle \Rightarrow \sum_{MC:\sigma_{\alpha}} e^{-\beta h(\sigma_{\alpha})} |\Phi\rangle$$

$$h(\sigma_{\alpha}) = V\sigma_{\alpha}O$$

$$O: one-body operator V<0: coupling constant V<0: couplin$$$$

Basis Generation process

Symmetry restoration

> Treatment of spurious center-of-mass motion

Lawson's prescription:

✓ Gloeckner and Lawson, PLB 1974

$$H' = H_{SM} + \beta_{c.m.} H_{c.m.}$$
$$H_{c.m.} = \frac{\mathbf{P}^2}{2AM} + \frac{1}{2}MA\omega^2\mathbf{R}^2 - \frac{3}{2}\hbar\omega$$

> Full projection of angular momentum

Truncation Scheme for *ab-initio* **shellmodel calculation**

Excitation energy up to $N_{max}\hbar\omega$ $2\hbar\omega + 4\hbar\omega = 6\hbar\omega \le N_{max}\hbar\omega$

Single particle energies up to $e_{oldsymbol{max}}\hbaroldsymbol{\omega}$

$$e_{max} = 2n + l$$

Outline

> Introduction

- Theoretical framework
 1) Unitary Correlation Operator Method
 2) Monte Carlo Shell-Model
- Results and discussion Low lying spectra for ¹⁰Be and ¹²Be
- > Summary and outlook

Numerical detail

- e_{max}=2n+l, which is the quantum number of Harmonic oscillator major shell;
- > The input potential is $V_{UCOM}(N^3LO)$ and $V_{UCOM}(AV18)$;
- > Coulomb interaction is NOT included in present calculation.

Beryllium low-lying spectra

The convergence of excited energy for ¹⁰Be as the function of MCSM dimension.

$$\epsilon = |E_n - E_{n-1}|$$

Beryllium low-lying spectra

> The excited states of ¹⁰Be and ¹²Be without treatment of spurious COM motion.

Beryllium low-lying spectra

> The excited states of ¹⁰Be and ¹²Be without treatment of spurious COM motion.

Quadrupole moment

The expectation value of quadrupole moments of 2⁺₁ and 2⁺₂ for ¹⁰Be and 2⁺₁ for ¹²Be

Quadrupole moment

The expectation value of quadrupole moments of 2⁺₁ and 2⁺₂ for ¹⁰Be and 2⁺₁ for ¹²Be

Quadrupole moment

The expectation value of quadrupole moments of 2⁺₁ and 2⁺₂ for ¹⁰Be and 2⁺₁ for ¹²Be

Occupation probabilities

> The single particle orbit occupation number of $0^+_1 0^+_2 2^+_1 2^+_2 2^+_3$ state for ¹⁰Be and $0^+_1 2^+_1$ for ¹²Be.

Occupation probabilities

> The single particle orbit occupation number of $0^+_1 0^+_2 2^+_1 2^+_2 2^+_3$ state for ¹⁰Be and $0^+_1 2^+_1$ for ¹²Be.

If the sd-shell is important, NCSM approach may have some difficulty because the full sd-shell configurations cannot be included at 8 $\hbar \Omega$ truncation.

Treatment of Spurious COM motion

E2 transition

	¹⁰ Be					
	Q	$\mathbf{B}(\mathbf{E2;2^{+}_{1}}\rightarrow\mathbf{0^{+}_{1}})$	$B(E2;2^+_2 \rightarrow 0^+_1)$	$B(E2;2^+_2 \rightarrow 2^+_1)$		
Exp.		9.2(3)	0.11(2)			
MCSM	-7.71	9.29	0.32	3.28		
$\mathbf{Unit.} \mathbf{O}(a \text{ fm}^2) = \mathbf{D}(\mathbf{E2}) (a^2 \text{ fm}^4)$						

Unit: $Q(e \text{ fm}^2)$, $B(E2) (e^2 \text{ fm}^4)$

• E.A. McCutchan, C. J. Lister, R. B. Wiringa, etc. Phys. Rev. Lett. 103, 192501 (2009)

➢ GFMC

Н	AV18	AV18+UIX	AV18+IL2	AV18+IL7	Expt.
$ E_{gs}(0^+) $	50.1(2)	59.5(3)	66.4(4)	64.3(2)	64.98
$E_{x}(2_{1}^{+})$	2.9(2)	3.5(3)	5.0(4)	3.8(2)	3.37
$E_{x}(2^{+}_{2})$	2.7(2)	3.8(3)	5.8(4)	5.5(2)	5.96
$B(E2; 2_1^+ \to 0^+)$	10.5(3)	17.9(5)	8.1(3)	8.8(2)	9.2(3)
$B(E2; 2_2^+ \to 0^+)$	3.3(2)	0.35(5)	3.3(2)	1.7(1)	0.11(2)
$\Sigma B(E2)$	13.8(4)	18.2(6)	11.4(4)	10.5(3)	9.3(3)

- M. Pervin, S. C. Pieper, and R.B. Wiringa, Phys. Rev. C. **76**, 064319 (2007).
- > NCSM with the CD-BONN, *NN* potential: B(E2; $2^+_1 \rightarrow 0^+_{g.s.}$) = 6.6 e² fm⁴
- E. Caurier, P. Navr['] atil, W.E. Ormand, and J.P Vary, Phys. Rev. C 66, 024314 (2002).

¹⁰Be: triaxial deformation ?

- 1) Assuming the 0^+_1 and the 2^+_1 states belong to the same K=0 band, the intrinsic quadrupole moment Q_0 can be evaluated from the B(E2) and the spectroscopic quadrupole moment
- 2) The B(E2; $2_{2}^{+} \rightarrow 2_{1}^{+}$) = 0, as the transition between 2_{2}^{+} and 2_{1}^{+} is forbidden.

$$Q_0 = \frac{(I+1)(2I+3)}{3K^2 - I(I+1)}Q \qquad \mathbf{Q_0} = \mathbf{20.51} \ e \ \mathbf{fm^2}$$
$$Q_0 = \left[\frac{16\pi}{5} \cdot B(E2)\right]^{1/2} \qquad \mathbf{Q_0} = \mathbf{21.61} \ e \ \mathbf{fm^2}$$
$$\mathbf{Seems to suggest axially symmetric deformation}$$

B(E2;
$$2^+_2 \rightarrow 2^+_1$$
) = 0.32 e^2 fm⁴

Breaking of K selection rule, triaxially symmetric deformation

¹⁰Be: triaxial deformation ?

B(E2) of Mirror nuclei: ¹⁰Be and ¹⁰C

- > The mirror symmetry of A=10 nuclei ?
- Evidence of proton halo ?
- A Sensitive test lies in the relative B(E2; $2^+ \rightarrow 0^+$)

Liquid drop model

$$B(E2) \propto Q^2 \propto (ZeR_0^2\beta)^2 \implies \frac{{}^{10}\mathrm{C} : B(E2;2^+_1 \to 0^+_1)}{{}^{10}\mathrm{Be} : B(E2;2^+_1 \to 0^+_1)} = \left(\frac{6}{4}\right)^2$$

The B(E2) of ¹⁰C should be LARGER than that of ¹⁰Be

> Shell model $B(E2; 2_1^+ \to 0_1^+) \propto [3.2 + 0.1 \times T_z]^2$ ¹⁰C: $T_z = -1$ ¹⁰Be: $T_z = 1$

• Alburger, et al., Phys. Rev. 1969

The B(E2) of ¹⁰C should be **SMALLER** than that of ¹⁰Be

B(E2) of Mirror nuclei: ¹⁰Be and ¹⁰C

- The mirror symmetry of A=10 nuclei ?
 Evidence of proton hole ?
- Evidence of proton halo ?

A Sensitive test lies in the relative B(E2; $2^+ \rightarrow 0^+$)

Expt. B(E2; $2^+_1 \rightarrow 0^+_1$) = 8.8(3) e^2 fm⁴

GFMC (AV18)

$$B(E2; 2^+ \rightarrow 0^+) \sim 4 e^2 \text{ fm}^4$$

(AV18+IL2)
 $B(E2; 2^+ \rightarrow 0^+) \sim 15 e^2 \text{ fm}^4$

• priv. com. with E. A. McCutchan

NCSM (CD Bonn) B(E2; $2^+ \rightarrow 0^+$) = 5.7 e^2 fm⁴

• E. Caurier, P. Navratil, W. Ormand, and J. Vary, Phys. Rev. C **66**, 024314 (2002)

MCSM (N³LO) B(E2; $2^+ \rightarrow 0^+$) = 9.30 e^2 fm⁴

Schematic illustration of reduced matrix elements of ¹⁰C B(E2;2⁺₁ \rightarrow 0⁺_{q.s.}) between single particle orbits

Schematic illustration of reduced matrix elements of ¹⁰C B(E2;2⁺₁ \rightarrow 0⁺_{q.s.}) between single particle orbits

Outline

> Introduction

- Theoretical framework
 1) Unitary Correlation Operator Method
 2) Monte Carlo Shell-Model
- Results and discussion Low lying spectra for ¹⁰Be and ¹²Be
- Summary and outlook

Summary and outlook

- ➢ For the first time in this work, we apply the UCOM potential to the MCSM for calculating some light exotic nuclei in an *ab-initio* way.
- We calculate the low lying spectra of Beryllium isotopes in e_{max}=3 model space with and without treatment of spurious COM motion.
 - 1) The results of 2_{1}^{+} and 2_{2}^{+} state excitation energies for ¹⁰Be with Lawson's prescription $\beta_{c.m.}$ =10ħ ω /A are closed to the experimental data;
 - 2) The deformation property has been investigated in terms of the quardrupole moments, the occupation number and the E2 transition probabilities. Triaxially symmetric deformation is revealed;
 - 3) The sensitivity of spurious COM has been investigated.

Summary and outlook

- In *ab initio* sense, more larger model space is needed to obtain the exact the experimental data, e.g. the binding energy.
- Even employing unitary transformation, UCOM potential transformed from N³LO interaction is still "hard" for the MCSM calculation.

Thank you !