Relativistic EOS for Supernova Simulations

- H. Shen Nankai University, Tianjin, China 中虹 南開大学 天津 中国 In collaboration with
 - H. Toki RCNP, Osaka University, Japan
 K. Sumiyoshi Numazu College of Technology, Japan
 K. Oyamatsu Aichi Shukutoku University, Japan
 W. Wen Nankai University, Tianjin, China
 Y. N. Wang Nankai University, Tianjin, China

Contents

Introduction

Models used for EOS

New version of EOS tables

 \succ Λ hyperon effects

neutron star matter: charge neutrality; β equilibrium; T~0

supernova matter: charge neutrality; fixed fractions; $T \neq 0$

What is the situation about EOS ?

2006.12.8

EOS for supernova simulations

A nonrelativistic EOS (compressible liquid-drop) Lattimer, Swesty, Nucl. Phys. A 535 (1991) 331

relativistic EOS (RMF + Thomas-Fermi) Shen, Toki, Oyamatsu, Sumiyoshi, Nucl. Phys. A 637 (1998) 435

★ relativistic EOS (RMF)

G. Shen, Horowitz, Teige, Phys. Rev. C 82 (2010) 015806

★ EOS (nuclear statistical equilibrium)

Hempel, Schaffner-Bielich, Nucl. Phys. A 837 (2010) 210

EOS for supernovae

Models used for EOS

• electron

RMF + Thomas-Fermi approximation

Why prefer the RMF theory ? nuclear many-body methods relativistic nonrelativistic Shell Model Relativistic Mean-Field (RMF) Skyrme-Hartree-Fock (SHF) Relativistic Hartree-Fock (**RHF**) Brueckner-Hartree-Fock (BHF) Relativistic Brueckner-Hartree-Fock (**RBHF**) . . .

Relativity is important !

PHYS.NANKAI UNIVERSITY

Brockmann, Machleidt, Phys. Rev. C 42 (1990) 1965

What is the RMF theory ?

Relativistic Mean Field Theory (RMF)

mean-field approximation: *meson field operators are replaced by their expectation values*

no-sea approximation: *contributions from the negative-energy Dirac sea are ignored*

Applications

infinite matter:

finite system:

flavor SU(2)

nuclear matter

nuclei

flavor SU(3)

strange hadronic matter

hypernuclei

Comparison with nuclear data

Fig. 2. Mass differences between the predictions of the present work and the experimental data for 2157 nuclei whose measured uncertainties for the masses are less than 0.2 MeV.³⁴

L.S.Geng, H.Toki, J.Meng, Prog. Theor. Phys. 113 (2005) 785

Relativistic Mean Field Theory

$$Lagrangian \qquad L = \overline{\psi} [i\gamma_{\mu}\partial^{\mu} - M - g_{\sigma}\sigma - g_{\omega}\gamma_{\mu}\omega^{\mu} - g_{\rho}\gamma_{\mu}\tau_{a}\rho^{a\mu}]\psi \\ + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} \\ - \frac{1}{4}W_{\mu\nu}W^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}c_{3}(\omega_{\mu}\omega^{\mu})^{2} \\ - \frac{1}{4}R_{\mu\nu}^{a}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu}$$

TM1 parameter set

Lagrangian

$$\Rightarrow$$
 Equations
 \Rightarrow Mean-Field Approximation

 Image: Constraint of the second state everything such as $\mathcal{E}, p, s...$

Thomas-Fermi approximation

- * body-centered cubic lattice
- * parameterized nucleon distribution
- * RMF input

 $E = E_{bulk} + E_{surface} + E_{Coulomb} + E_{Lattice} + E_{electron}$

Thomas-Fermi approximation

parameterized nucleon distribution

H.Shen, H.Toki, K.Oyamatsu, K.Sumiyoshi, Nucl. Phys. A637 (1998) 435

Check the parameterization

Self-consistent Thomas-Fermi approximation

$$Lagrangian L_{RMF} = \overline{\psi} \left[i\gamma_{\mu}\partial^{\mu} - (M + g_{\sigma}\sigma) - \left(g_{\omega}\omega + g_{\rho}\tau_{3}\rho + e\frac{\tau_{3} + 1}{2}A \right)\gamma^{0} \right]\psi \\ - \frac{1}{2}(\nabla\sigma)^{2} - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} \\ + \frac{1}{2}(\nabla\omega)^{2} + \frac{1}{2}m_{\omega}^{2}\omega^{2} + \frac{1}{4}c_{3}\omega^{4} \\ + \frac{1}{2}(\nabla\rho)^{2} + \frac{1}{2}m_{\rho}^{2}\rho^{2} + \frac{1}{2}(\nabla A)^{2} \\ + \sum_{l}\overline{\psi}_{l}\left(i\gamma_{\mu}\partial^{\mu} - m_{l} + eA\gamma^{0}\right)\psi_{l}$$

Equations

$$-\Delta\sigma + m_{\sigma}^{2}\sigma = -g_{\sigma}\rho_{s} - g_{2}\sigma^{2} - g_{3}\sigma^{3},$$

$$-\Delta\omega + m_{\omega}^{2}\omega = g_{\omega}\rho_{\nu} - c_{3}\omega^{3},$$

$$-\Delta\rho + m_{\rho}^{2}\rho = g_{\rho}\left(\rho_{\nu}^{p} - \rho_{\nu}^{n}\right),$$

$$-\Delta A = e\left(\rho_{\nu}^{p} - \rho_{\nu}^{l}\right).$$

$$\left(k_{F}^{b}\right)^{2} = \left(\mu_{b} - U_{\nu}^{b}\right)^{2} - M^{*2}$$

$$M^{*} = M + g_{\sigma}\sigma$$

$$U_{\nu}^{b} = g_{\omega}\omega + g_{\rho}\tau_{3}\rho + e\frac{\tau_{3}+1}{2}A$$

Self-consistent Thomas-Fermi approximation

AL UNILERSIT

New version of EOS tables

 $\begin{array}{l} \textbf{EOS1} (1998\text{-version, nucleon}) \\ \textbf{Shen, Toki, Oyamatsu, Sumiyoshi, Prog. Theor. Phys. 100 (1998) 1013} \\ \textbf{EOS2} (2010\text{-version, nucleon}) \\ \textbf{Shen, Toki, Oyamatsu, Sumiyoshi, Astrophys. J. Suppl. (2011) in press} \\ \textbf{EOS3} (2010\text{-version, nucleon}+\Lambda) \\ \textbf{Shen, Toki, Oyamatsu, Sumiyoshi, Astrophys. J. Suppl. (2011) in press} \end{array}$

http://physics.nankai.edu.cn/grzy/shenhong/EOS/index.html

http://user.numazu-ct.ac.jp/~sumi/eos/index.html

Comparison between EOS tables

		EOS1	EOS2	EOS3
Constituents	Uniform Matter	n, p, α	n, p, α	$n,p,lpha,\Lambda$
	Non-uniform Matter	n, p, α, A	n, p, α, A	n, p, α, A
T	Range	$-1.0 \le \log_{10}(T) \le 2.0$	$-1.0 \le \log_{10}(T) \le 2.6$	$-1.0 \le \log_{10}(T) \le 2.6$
(MeV)	Grid Spacing	$\Delta \log_{10}(T) \simeq 0.1$	$\Delta \log_{10}(T) = 0.04$	$\Delta \log_{10}(T) = 0.04$
	Points	<u>32</u> (including $T = 0$)	92 (including $T = 0$)	92 (including $T = 0$)
	Range	$-2 \le \log_{10}(Y_p) \le -0.25$	$0 \le Y_p \le 0.65$	$0 \le Y_p \le 0.65$
Y_p	Grid Spacing	$\Delta \log_{10}(Y_p) = 0.025$	$\Delta Y_p = 0.01$	$\Delta Y_p = 0.01$
	Points	72 (including $Y_p = 0$)	66	66
ρ_B	Range	$5.1 \le \log_{10}(\rho_B) \le 15.4$	$5.1 \le \log_{10}(\rho_B) \le 16$	$5.1 \le \log_{10}(\rho_B) \le 16$
(g/cm^3)	Grid Spacing	$\Delta \log_{10}(\rho_B) \simeq 0.1$	$\Delta \log_{10}(\rho_B) = 0.1$	$\Delta \log_{10}(\rho_B) = 0.1$
	Points	104	110	110

T number of points is increased; upper limit is extended; equal grid is used

* Y_p linear grid is used; upper limit is extended

☀

 ρ_B upper limit is extended; equal grid is used

Phase diagrams

Distributions in non-uniform matter

Heavy nuclei in non-uniform matter

Fractions of components

Effects of Λ hyperons

non-nucleonic degrees of freedom

***** boson condensates: π , K

\Rightarrow quarks: u, d, s

EOS for supernovae with hyperons

Pion condensate

PHYSICAL REVIEW C 80, 038202 (2009)

Possibility of an s-wave pion condensate in neutron stars reexamined

A. Ohnishi,¹ D. Jido,¹ T. Sekihara,² and K. Tsubakihara³
 ¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
 ²Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
 ³Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
 (Received 20 October 2008; revised manuscript received 5 September 2009; published 30 September 2009)

We examine possibilities of pion condensation with zero momentum (*s*-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parametrized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. The proton fraction (Y_p) and electron chemical potential (μ_e) in neutron star matter are evaluated in RMF models. We find that the *s*-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or the b_1 parameter in U has density dependence.

Experimental information

scattering experiments

hypernuclear data

NN scattering data > 4000

YN scattering data ~ 40

no YY scattering data

single- Λ hypernuclei > 30

double- Λ hypernuclei ~ 4

single-Σ hypernuclei ~ 1

Hypernuclear Chart

O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564

Neutron star matter with hyperons

PHYS.NANKAI UNIVERSITY

Y.N.Wang, H.Shen, Phys. Rev. C 81 (2010) 025801

Hypernuclei in the RMF model

PHYS.NANKAI UNIVERSITY

「南開」号 アイトリック PHYS.」

Hypernuclei in the RMF model

Double- Λ hypernuclei

Table II. B_{AA} and $\triangle B_{AA}$ of double-A hypernuclei. The calculated results of models 1 and 2 are denoted by 1 and 2, respectively. The available experimental data are taken from Refs. 10)–14).

	$B_{\Lambda\Lambda}$		TM1		NL-SH	$\triangle B_{\Lambda\Lambda}$		TM1		NL-SH
	exp.	1	2	1	2	exp.	1	2	1	2
$^{6}_{\Lambda\Lambda}$ He	7.25 ± 0.2	5.52	5.48	4.75	4.68	1.0 ± 0.2	1.07	1.03	1.08	1.01
$^{10}_{\Lambda\Lambda}{ m Be}$	$\begin{array}{c} 17.7 \pm 0.4 \\ 14.6 \pm 0.4 \\ 8.5 \pm 0.7 \end{array}$	16.34	16.28	16.03	15.94	$\begin{array}{c} 4.3\pm 0.4 \\ 1.2\pm 0.4 \\ -4.9\pm 0.7 \end{array}$	0.37	0.31	0.38	0.29
$^{13}_{\Lambda\Lambda}{ m B}$	27.5 ± 0.7	22.14	22.07	22.65	22.52	4.8 ± 0.7	0.26	0.19	0.33	0.21
$^{18}_{\Lambda\Lambda}{ m O}$		25.89	25.85	25.30	25.23		0.14	0.10	0.14	0.07
$^{42}_{\Lambda\Lambda}$ Ca		38.15	38.13	37.90	37.86		0.04	0.02	0.04	0.00
$^{92}_{AA}{ m Zr}$		47.11	47.10	47.73	47.71		0.03	0.02	0.04	0.02
$^{210}_{AA}\mathrm{Pb}$		52.19	52.19	53.03	53.02		0.03	0.02	0.02	0.02

H.Shen, F.Yang, H.Toki, Prog. Theor. Phys. 115 (2006) 325

Effects of Λ hyperons

---- EOS2 --- EOS3

HALLON/LERSIT

Relativity is important at high density

- New versions of EOS tables are available EOS2, EOS3
- Λ hyperon can soften EOS at high density
- Exotic phases are quite uncertain

