The parity-transfer reaction (¹⁶O,¹⁶F) for studies of pionic O⁻ mode

Masanori Dozono RIKEN Nishina Center

International symposium on frontiers in nuclear physics 1-3 November 2011, Beihang university

Tensor correlations in nuclei

Tensor force

- NN Int. is originally due to meson exchange

 ⇒ Essential in understanding of nuclear properties
 g.s. properties (total binding energy, radii, ...)
 excited state properties (excitation energy, strength, ...)
- Spin-Dipole (SD) mode
 - (Isovector) SD operator

$$\hat{O}^{\lambda,\mu}_{\pm} = \sum \tau^i_{\pm} r_i [Y_1(\hat{r}_i) \times \sigma_i]^{\lambda}_{\mu}$$

- $\Delta L=1$, $\Delta S=1$, $\Delta T=1$
- ΔJ^π=0⁻, 1⁻, 2⁻

SD 0⁻ mode

- Carries quantum numbers of pion ($J^{\pi}=0^{-}$, T=1)
- Reflects pion-like (tensor) correlations in nuclei

Tensor Effects on O⁻ Strengths

C. L. Bai, H. Sagawa et al., PRC 83, 054316 (2011); Private communication

Status of O⁻ Identification

O⁻ Search via Polarization Measurements

Need to separate SD $0^-, 1^-, 2^- \Rightarrow$ Polarization observables

O⁻ Search via Polarization Measurements

- ¹²C(d,²He) and (p,n) experiments
 - Revealed the existence of $0^{\text{-}}$ at $E_x \sim 9 MeV$
 - More than half of the expected strengths are missing
 - In particular, absence of the higher-energy peak at around E_x~15MeV is still a mystery.
- Why O⁻ strengths are missing ?
 - At higher excitation-energy region, Relatively large physical B.G.
 [Other SD, Other L (L=0,2,...)] S
 - Signature of 0⁻ may be hindered

Parity-transfer (160,16F) Reaction

Parity-transfer reaction is selective tool for 0-!

- Parity-trans. (16O,16F)
 - ¹⁶O (g.s., 0^+) \rightarrow ¹⁶F (g.s., 0^-)
- Advantages
 - Selectively excite unnatural-parity states
 - 1⁻ contribution is negligible
 - Single J^{π} for each ΔL
 - J^π (0⁻, 1⁺, 2⁻,...) can be assigned
 only by the angular distribution (⇔ ΔL)

	$\Delta L=0$	$\Delta L=1$	ΔL=2	•••
Parity-trans.	0-	ן+	2-	•••
(p,n),(d,²He) etc.	0+, 1+	<mark>0</mark> -, 1-, 2-	1+, 2+, 3+	•••

Clean extraction of O⁻ strength

Parity-transfer (16O,16F) Reaction

Parity-transfer reaction is selective tool for 0-!

- Parity-trans. (¹⁶O,¹⁶F)
 - ¹⁶O (g.s., 0^+) \rightarrow ¹⁶F (g.s., 0^-)
- Advantages
 - Selectively excite unnatural-parity states
 - 1⁻ contribution is negligible
 - Single J^{π} for each ΔL
 - J^π (0⁻, 1⁺, 2⁻,...) can be assigned
 only by the angular distribution (⇔ ΔL)

	ΔL=0	∆L=1	ΔL=2	•••
Parity-trans.	0-	ן+	2-	•••
(p,n),(d,²He) etc.	0+, 1+	<mark>0</mark> -, 1-, 2-	1+, 2+, 3+	•••

Clean extraction of O⁻ strength

Proposed Experiment at RI Beam Factory

We apply parity-trans. reaction to ¹²C target [¹²C(¹⁶O,¹⁶F)¹²B at 250A MeV]

- Why ¹²C ?
 - <u>Known</u> 0⁻ at $E_x=9.3$ MeV in ¹²B \Rightarrow Confirm effectiveness of parity-trans. reaction
 - Missing 0⁻ at E_x~15MeV
 - The position should be sensitive to tensor force effects
 - Experimentally more feasible
 - High luminosity, Low B.G. compared with heavier nuclei

SGII

(T,U)

SGII+Te1 : (500,-350) SGII+Te2 : (600,0)

SGII+Te3 : (650,200)

Goal: Establish the parity-trans. reaction as a new tool for the 0⁻ study

Experimental Setup

- Beam : ¹⁶O
 - 250A MeV, 10⁷ pps
- Target : ¹²C
 - natC(¹²C,98.9%), 300mg/cm²
- ${}^{16}F$: unbound to ${}^{15}O + p$
 - ¹⁵O: Focal-plane detector of SHARAQ
 - p: MWDC @ exit of D1
- Methods
 - Invariant-mass of ${}^{15}\text{O+p}$ \Rightarrow Identify O⁻ g.s. of ${}^{16}\text{F}$
 - Missing-mass \Rightarrow Deduce E_x in ¹²B and θ

RI Beam Factory at RIKEN

RIBF provides the world's most intense RI beam at 200~300MeV/u over the whole range of atomic masses.

Small ambiguities in reaction mechanism

SHARAQ spectrometer

SHARAQ is a HIGH-RESOLUTION magnetic spectrometer constructed at RIBF by Univ. of Tokyo - RIKEN collaboration

- Design specfication
 - Maximum rigidity : 6.8 Tm
 - Momentum resolution
 : dp/p = 1/14700
 - Angular resolution : ~ 1mrad
 - Momentum acceptance : ±1%
 - Angular acceptance : ~ 5msr

We can use heavy-ion reaction as a nuclear spectroscopy tool !

Coincidence measurement mode of SHARAQ

We simulated ion optics of SHARAQ by using program code COSY.

Standard optics mode

Coincidence measurement mode of SHARAQ

Expected Spectra

 $\delta P_p = 1/1200, \delta \theta_p = 4 \text{mrad}$ $\delta P_{150} = 1/10000, \delta \theta_{150} = 2 \text{mrad}$

Summary

- We propose parity-transfer reaction (¹⁶O,¹⁶F) for O⁻ study
- To confirm its effectiveness, we apply parity-transfer reaction to ¹²C.
 ⇒ ¹²C(¹⁶O,¹⁶F) at 250A MeV, Only possible at RIBF
- We determine the 0⁻ distributions in ¹²B
 ⇒ Tensor correlation effects
- We'd like to perform the experiment in 2012.

This is FIRST-STEP study to apply parity-trans. reaction to collective 0⁻ strengths in heavier nuclei → Systematic study of pionic (tensor) correlations in nuclei

Collaborators

- RIKEN Nishina Center
 - T. Uesaka, H. Sakai, T. Kubo, K. Yoshida, Y. Yanagisawa,
 N. Fukuda, H. Takeda, D. Kameda, N. Inabe
- CNS, University of Tokyo
 - S. Shimoura, S. Michimasa, S. Ota, H. Matsubara, Y. Sasamoto,
 S. Noji, H. Tokieda, H. Miya, S. Kawase, T. Tang, Y. Kikuchi,
 K. Kisamori, M. Takaki, Y. Kubota, C. S. Lee, T. Fujii, R. Yokoyama
- University of Tokyo
 - K. Yako
- Kyushu University
 - T. Wakasa, K. Fujita, S. Sakaguchi
- Aizu University
 - H. Sagawa, M. Yamagami