Spin－orbit Splitting in Oxygen Isotopes

Tomohiro Uesaka（RIKEN）\＆Shoichiro Kawase（CNS） for E349 \＆SHARAQ04 Collaborations

Magicity and spin－orbit coupling

Magic number ：Appearance of closed shells 2，8，20，28，50，82， $126 \ldots$ The most established＂regularity＂in（stable）nuclei．

Woods－Saxon＋Spin－orbit coupling

Spin－orbit coupling

 should be revisited．
A simple＂spin－orbit potential＂picture doesn＇t work ．．．．

$U_{\mathrm{LS}}=V_{\mathrm{LS}}(r) \vec{L} \cdot \vec{S}$
 $\Delta E_{\mathrm{LS}} \propto(2 L+1)\left\langle V_{\mathrm{LS}}(r)\right\rangle$

Microscopic origins of spin－orbit coupling in ${ }^{16} \mathrm{O},{ }^{40} \mathbf{C a}$

Scheerbaum，Nucl．Phys．A 257 （1976） 77.
Ando and Bando，Prog．Theor．Phys． 66 （1981） 227.
Pieper and Pandharipande，Phys．Rev．Lett． 70 （1993） 2541.
3N force

＂Spin－orbit coupling in heavy nuclei＂ Fujita and Miyazawa，PTP 17 （1957） 366.

Tensor force

Wigner \＆Feingold，PR 79 （1950） 221. Arima \＆Terasawa，PTP 23 （1960） 87.

NN LS interaction
σ and ω exchange isoscaler in nature

Spin－orbit coupling in unstable nuclei

Correlation：2p2h \rightarrow Myo－san＇s talk

First－order tensor effect by Otsuka

Spin－orbit coupling in unstable nuclei

Correlation：2p2h \rightarrow Myo－san＇s talk
First－order tensor

Pion dynamics（tensor +3 N）should play a central role！
It is stimulating to see experimentally how $\Delta E_{l s}$ changes as a function of Z / N ．

Oxygen Isotopes

$\mathrm{Z}=8$ ：proton magicity
${ }^{16} \mathrm{O}$ ：most intensively studied nucleus
Ando and Bando，PTP 66 （1981） 227.
Pieper and Pandharipande，PRL 70 （1993） 2541.
Within the reach of recent rigorous calculations

	Proton	Neutron
$\Delta E_{1 p_{1 / 2}-1 p_{3 / 2}}$	6.32 MeV	6.18 MeV
$\Delta E_{1 d_{3 / 2}-1 d_{5 / 2}}$	5.10 MeV	5.09 MeV

C．Barbieri，PLB 643， 268 （2006）．
G．Hagen et al．，PRC 80，021306（R）（2009）．

S．Fujii et al．PRL 103， 182501 （2009）．

${ }^{14,22-24} \mathrm{O}:$ Future experiment at RIBF
${ }^{18} \mathrm{O}:$ Experiment at RCNP

（p，2p）／（p，pn）Knockout Reactions

A nucleon is knocked out without serious disturbance to the residual nucleus． Scattering observables are directly connected to properties of the nucleon． Spin asymmetry is a good signature of J （total angular momentum）．

NN scattering in the nuclear medium
Reaction mechanism is reasonably simple．

$(\vec{p}, p N)$ Reaction

－Good probe to single hole states at $\mathrm{E} \geqq \mathbf{1 0 0} \mathbf{~ M e V} /$ nucleon． RIBF／FAIR／FRIB／RCNP energies
\Leftrightarrow transfer reactions at lower energies（ $10-30 \mathrm{MeV} /$ nucleon）
－Momentum dependence of $\mathbf{d \sigma} / \mathbf{d} \Omega$
$\Rightarrow \mathrm{L}$ and S －factor
－Analyzing power（ A_{y} ）
\Rightarrow J
Proposed by Maris \＆Jacob Demonstrated at TRIUMF
by Kinching
Sophisticated at RCNP
by Noro

P．Kinching et al．，
NPA 340 （1980） 423.

${ }^{18} \mathrm{O}(p, 2 p)$ experiment @RCNP

${ }^{18} \mathrm{O}(p, 2 p) @ 200 \mathrm{MeV}$

$\mathrm{E}_{2}[\mathrm{MeV}]$

Kawase et al.

Momentum distributions

Kawase et al．

Analyzing Power！

Kawase et al．

Application of the method to continuum

Kawase et al．

Differential Cross Section

11.13 MeV

Both of the states are $p_{3 / 2}$－hole states．

${ }^{18} \mathrm{O}(p, 2 p)$ experiment＠RCNP

1）Fragmented strengths（ $p_{3 / 2}$ ） can not be neglected．
2）Spin－asymmetry $\left(A_{y}\right)$ plays an important role in determining J ．

$$
E_{1 \mathrm{p} 3 / 2}=\sum_{1 \mathrm{p} 3 / 2 \text { states }} w_{i} E_{i}
$$

$$
\Delta E_{\mathrm{LS}}\left(1 \mathrm{p} ;{ }^{18} \mathrm{O}\right)=6.5 \pm 0.1 \mathrm{MeV}
$$

Spin－orbit splitting in ${ }^{18} \mathrm{O}$

	$\begin{aligned} & 012 \\ & 0.40 \mathrm{MeV} \\ & 0 \cdot \\ & 3 p \end{aligned}$	$\begin{gathered} 013 \\ 8.53 \mathrm{~ms} \\ (3 / 2-) \\ \mathrm{E} \mathrm{CP}_{\mathrm{P}} \end{gathered}$		$\begin{aligned} & \text { O15 } \\ & 121.24 \\ & 12- \\ & \mathrm{EC} \\ & \hline \end{aligned}$	$\begin{gathered} 016 \\ \bullet+ \\ \text { en.762 } \end{gathered}$	$\begin{gathered} 017 \\ 52+ \\ 0.038 \end{gathered}$	$\begin{gathered} 018 \\ 0+ \\ 0.300 \end{gathered}$	019 $26.91=$ $5 / 2+$ 8.	$\begin{gathered} 020 \\ 13.515 \end{gathered}$	$\begin{array}{\|c\|} \hline 021 \\ 3,125 \\ (1,2,3 / 2,5 / 2)+ \\ 8 \end{array}$	$\begin{gathered} 022 \\ 2.25 \mathrm{~s} \\ 0+ \end{gathered}$	023 82 ms	024 $610 \rightarrow$ $0+$

Tensor force effect！

Solid Polarized Proton Target at CNS－RIKEN

Polarized Proton Target applicable to RI beam exp．

Material：$\quad \mathrm{C}_{10} \mathrm{H}_{8}\left(+\mathrm{C}_{22} \mathrm{H}_{14}\right)$
Thickness：$\quad 1 \mathrm{~mm}\left(120 \mathrm{mg} / \mathrm{cm}^{2}\right)$
Size： $\varphi 14$ mm
Polarization： $\mathrm{P}=15-20 \%$
Temperature： 100 K
Mag．field： 0.1 T

10 cm
T．Wakui et al．，NIM A 550 （2005） 521.
T．Uesaka et al．，NIM A 526 （2004） 186.
M．Hatano et al．，EPJ A 25 （2005） 255.

Proton Elastic Scattering of ${ }^{6,8} \mathbf{H e}$

TU，S．Sakaguchi et al．，PRC 82 （2010） 021602.
S Sakaguchi，TU et al．，PRC 84 （2011） 024604.

S．Sakaguchi，PhD thesis．

${ }^{22} \mathrm{O}(p, 2 p)$ spectrum（expected）

Perspective at RIBF

Z=28 (Nickel)

1）Neutron－and proton－rich oxygen isotopes 2）Heavier nuclei（ex．Nickel）
3）$(p, 2 p)+(p, p n)$

2011年11月3日木曜日

Summary

Spin－orbit coupling in nuclei should be revisited．
Tensor and 3N interactions play central roles．
Experiments to determine $\underline{\Delta E_{\mathrm{LS}}}$ in oxygen isotopes are ongoing： a direct measure of the spin－orbit coupling
${ }^{18} \mathbf{O}(\mathrm{p}, 2 \mathrm{p}) @ \mathrm{RCNP}$
$\Delta \mathrm{E}_{\mathrm{LS}}\left(1 \mathrm{p},{ }^{18} \mathrm{O}\right)=6.5 \mathrm{MeV}<7 \mathrm{MeV}$ in ${ }^{16} \mathrm{O}$
－One should pay attention to fragmented strengths．
－Spin－asymmetry is useful for unambiguous $\mathbf{J}^{\boldsymbol{\pi}}$ determination
${ }^{14,22-24} \mathbf{O}(\mathbf{p}, 2 \mathrm{p}) @$ RIBF in near future
Polarized proton target can be used for the spin－asymmetry measurement

