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Magicity and spin-orbit coupling

Magic number :  Appearance of closed shells  2, 8, 20, 28, 50, 82, 126 . . . . 

Mayer & Jensen

+Spin-orbit coupling

                  The most established “regularity” in (stable) nuclei.

Spin-orbit coupling
should be revisited.
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A simple “spin-orbit potential” picture doesn’t work . . . .  
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Microscopic origins of spin-orbit coupling in 16O, 40Ca

NN LS interaction
    σ and ω exchange
       isoscaler in nature

3N force

Scheerbaum, Nucl. Phys. A 257 (1976) 77. 
Ando and Bando, Prog. Theor. Phys. 66 (1981) 227.
Pieper and Pandharipande, Phys. Rev. Lett. 70 (1993) 2541.

Tensor force

“Spin-orbit coupling in heavy nuclei”
Fujita and Miyazawa, PTP 17 (1957) 366.

Wigner & Feingold, PR 79 (1950) 221.
Arima & Terasawa, PTP 23 (1960) 87.
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Spin-orbit coupling in unstable nuclei

NN LS

Tensor

3N

+

Correlation:  2p2h  → Myo-san’s talk
First-order tensor 
    effect by Otsuka

Mean-field
 effects
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Spin-orbit coupling in unstable nuclei

NN LS

Tensor

3N

+

Correlation:  2p2h  → Myo-san’s talk
First-order tensor 
    effect by Otsuka

Mean-field
 effectsPion dynamics (tensor + 3N) should play a central role!

It is stimulating to see experimentally how ΔEls changes 
as a function of Z/N. 
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Oxygen Isotopes

Z=8: proton magicity

16O: most intensively studied nucleus
    Ando and Bando, PTP 66 (1981) 227.
     Pieper and Pandharipande, PRL 70 (1993) 2541.

Within the reach of recent rigorous calculations
	 with realistic NN(+3N) interactions.
    C. Barbieri, PLB 643, 268 (2006).
     G. Hagen et al., PRC 80, 021306(R) (2009). 
     S. Fujii et al. PRL 103, 182501 (2009).

14,22−24O : Future experiment at RIBF
18O        : Experiment at RCNP
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(p,2p)/(p,pn) Knockout Reactions

Chapter 2

The (p,2p) Reaction

To determine the spin-orbit splitting of 18O nuclei, we used the (p,2p) reac-
tion to determine energies and Jπs of single-hole states of 17N. The detail
of this reaction is discussed below.

2.1 Kinematics

The (p,2p) reaction is the direct knockout of a proton in nucleus by injected
one. A schematical view of this reaction is shown in Fig. ??. Fixed the mo-
mentum of injected proton, it has six degrees of freedom can be represented
as a set of physical quantities: {k, Sp, θNN , φNN} or {p1, p2}. Here k is
the momentum of a will-be-knocked-out proton in nucleus , Sp is the proton
separation energy, θNN is the scattering angle in NN center of mass system,
φNN is the angle between the plane containing pi and k and one containing
p1 and p2. θ1 θ2

2.2 Jπ dependency

2.3 Figure of Merit

The figure of merit is as follows:

Figure of Merit = A2
y ∗

dσ

dΩ
.

2.4 Determination of Experimental Condition
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Ti

T1

T2

A nucleon is knocked out without serious disturbance to the residual nucleus. 
Scattering observables are directly connected to properties of the nucleon.

Spin asymmetry is a good signature of J (total angular momentum).

NN scattering in the nuclear medium
Reaction mechanism is reasonably simple.
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(p,pN) Reaction
・ Good probe to single hole states at E≧100 MeV/nucleon.
	 	 RIBF/FAIR/FRIB/RCNP energies
	   	  ⇔ transfer reactions at lower energies (10‐30 MeV/nucleon)

・ Momentum dependence of dσ/dΩ
	 ⇒ L and S-factor
・ Analyzing power (Ay)
	 ⇒ J

Proposed by Maris & Jacob
Demonstrated at TRIUMF
	 	 by Kinching
Sophisticated at RCNP
	 	 by Noro

16O(p,pp) @ 200MeV

P. Kinching et al., 
NPA 340 (1980) 423.
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18O(p,2p) experiment @RCNP
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Momentum distributions Kawase et al.
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Chapter 6

Discussion

6.1 Comparison with DWIA calculation

The experimental results are compared with the calculation based on the distorted

wave impulse approximation by using the computer code THREEDEE[18] developed

by Chant and Roos. Energy-dependent atomic-mass-dependent global Dirac opti-

cal model potential EDAD2 and energy-dependent atomic-mass-independent (16O)

Dirac optical model potential EDAIO, which are obtained by Cooper[30], were used

in the calculation. Single particle wave functions are calculated from the Schrödinger

equation with the Woods-Saxon potential whose depth is adjusted to match the pro-

ton separation energy. As NN scattering amplitude, one obtained by Arndt[31] by

phase shift analysis was used.

The results of calculation using EDAD2 are shown in Figs. 6.1–6.3. For states

with known Jπ, DWIA calculation reproduces recoil momentum dependence of the

cross section well, while calculations for Ay overestimate the experimental values.

Further study of reaction is needed for explain this disagreement. But it doesn’t

affect the identification of Jπ value of states because the signs of calculated and

experimental Ay values of 1p states are in good agreement and the absolute value

of them are enough large.

For the Jπ-unidentified states, namely the states with Ex = 10.14 MeV and

Ex = 11.13 MeV, it is reasonable to consider that these states are mostly made up

of 1p3/2 component.

In this thesis, S-factor S is defined as a normalize factor of the cross section,

(
dσ

dΩ

)

experiment

= S ×
(

dσ

dΩ

)

DWIA

. (6.1)
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We can not differentiate
p1/2 and p3/2 states. . . .
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Analyzing Power! Kawase et al.
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CHAPTER 4. DATA ANALYSIS

The error of Sp is calculated as

δSp !
√

δEi
2 + δE1

2 + δE2
2. (4.18)

The typical resolution of separation energy was 350 keV. It is due to energy

losses of scattered protons in the target (∼300 keV) and to the energy resolution of

beam itself (∼100 keV). The rest (∼150 keV) may be due to the energy resolutions

of the spectrometers.

4.6.2 Differential cross section and analyzing power

The differential cross section of the (p, 2p) reaction in the laboratory system is

written as
d3σ

dΩGRdΩLASdEGR
=

Y

Qaεεal∆ΩGR∆ΩLAS∆EGR
, (4.19)

where

Y : number of (p, 2p) coincidence events,

Q : number of incident protons,

∆Ω : solid angle of each spectrometer,

a : areal number density of target particles,

ε : detection efficiency of GR and LAS,

εa : effective acceptance ratio defined in Sec. 4.4,

l : live time ratio of DAQ,

∆EGR : energy acceptance of GR.

The efficiency of each spectrometer is the product of the efficiencies of all detectors

at the focal plane, namely VDCs and plastic scintillators, but the efficiency of plastic

scinttilators was considered as 100%.

The number of events for spin-up (↑) and spin-down (↓) is given as

Y↑ =
d3σ

dΩGRdΩLASdEGR
(1 + P↑Ay)Q↑aε↑l↑∆ΩGR∆ΩLAS∆EGR, (4.20)

Y↓ =
d3σ

dΩGRdΩLASdEGR
(1 + P↓Ay)Q↓aε↓l↓∆ΩGR∆ΩLAS∆EGR. (4.21)

From eqs. 4.19–4.21, the analyzing power is derived as

Ay =
1 − α

P↓ − P↑α
, (4.22)

37

gnd.  1p1/2 5.515 MeV 1p3/2
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Ay =
1 − α

P↓ − P↑α
, (4.22)

37 Ay > 0 : p3/2 Ay < 0 : p1/2 Jπ dependence of Ay is robust.
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Application of the method to continuum Kawase et al.
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CHAPTER 4. DATA ANALYSIS

The error of Sp is calculated as

δSp !
√

δEi
2 + δE1

2 + δE2
2. (4.18)

The typical resolution of separation energy was 350 keV. It is due to energy

losses of scattered protons in the target (∼300 keV) and to the energy resolution of

beam itself (∼100 keV). The rest (∼150 keV) may be due to the energy resolutions

of the spectrometers.

4.6.2 Differential cross section and analyzing power

The differential cross section of the (p, 2p) reaction in the laboratory system is

written as
d3σ

dΩGRdΩLASdEGR
=

Y

Qaεεal∆ΩGR∆ΩLAS∆EGR
, (4.19)

where

Y : number of (p, 2p) coincidence events,

Q : number of incident protons,

∆Ω : solid angle of each spectrometer,

a : areal number density of target particles,

ε : detection efficiency of GR and LAS,

εa : effective acceptance ratio defined in Sec. 4.4,

l : live time ratio of DAQ,

∆EGR : energy acceptance of GR.

The efficiency of each spectrometer is the product of the efficiencies of all detectors

at the focal plane, namely VDCs and plastic scintillators, but the efficiency of plastic

scinttilators was considered as 100%.

The number of events for spin-up (↑) and spin-down (↓) is given as

Y↑ =
d3σ

dΩGRdΩLASdEGR
(1 + P↑Ay)Q↑aε↑l↑∆ΩGR∆ΩLAS∆EGR, (4.20)

Y↓ =
d3σ

dΩGRdΩLASdEGR
(1 + P↓Ay)Q↓aε↓l↓∆ΩGR∆ΩLAS∆EGR. (4.21)

From eqs. 4.19–4.21, the analyzing power is derived as

Ay =
1 − α

P↓ − P↑α
, (4.22)
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Chapter 6

Discussion

6.1 Comparison with DWIA calculation

The experimental results are compared with the calculation based on the distorted

wave impulse approximation by using the computer code THREEDEE[18] developed

by Chant and Roos. Energy-dependent atomic-mass-dependent global Dirac opti-

cal model potential EDAD2 and energy-dependent atomic-mass-independent (16O)

Dirac optical model potential EDAIO, which are obtained by Cooper[30], were used

in the calculation. Single particle wave functions are calculated from the Schrödinger

equation with the Woods-Saxon potential whose depth is adjusted to match the pro-

ton separation energy. As NN scattering amplitude, one obtained by Arndt[31] by

phase shift analysis was used.

The results of calculation using EDAD2 are shown in Figs. 6.1–6.3. For states

with known Jπ, DWIA calculation reproduces recoil momentum dependence of the

cross section well, while calculations for Ay overestimate the experimental values.

Further study of reaction is needed for explain this disagreement. But it doesn’t

affect the identification of Jπ value of states because the signs of calculated and

experimental Ay values of 1p states are in good agreement and the absolute value

of them are enough large.

For the Jπ-unidentified states, namely the states with Ex = 10.14 MeV and

Ex = 11.13 MeV, it is reasonable to consider that these states are mostly made up

of 1p3/2 component.

In this thesis, S-factor S is defined as a normalize factor of the cross section,

(
dσ

dΩ

)

experiment

= S ×
(

dσ

dΩ

)

DWIA

. (6.1)
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10.14 MeV 11.13 MeV

Both of the states
are p3/2-hole states.
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18O(p,2p) experiment @RCNP
Kawase et al.

1) Fragmented strengths (p3/2) 
      can not be neglected. 
2) Spin-asymmetry (Ay) plays 
      an important role 
      in determining J. 

∼
∣∣〈p ⊗ 17N|18O〉

∣∣2

wi =
Si∑

1p3/2 states S

E1p3/2 =
∑

1p3/2 states

wiEi

1

ΔELS(1p;18O) = 6.5 ± 0.1 MeV
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Spin-orbit splitting in 18O
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Tensor force effect!

Spin-orbit splitting in 18O is smaller than that in 16O.
We can extend this work to 24O / 14O at RIBF!

Kawase et al.
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Solid Polarized Proton Target at CNS-RIKEN

Polarized Proton Target applicable to RI beam exp.

T. Wakui et al., NIM A 550 (2005) 521.
T. Uesaka et al.,  NIM A 526 (2004) 186.
M. Hatano et al., EPJ A 25 (2005) 255. 

Material:         C10H8  (+ C22H14)
Thickness:      1 mm (120 mg/cm2)
Size:  φ14 mm
Polarization:   P=15−20%
Temperature:  100 K
Mag. field:      0.1 T
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Proton Elastic Scattering of 6,8He

陽子-6,8He核弾性散乱のスピン非対称測定
　　　弱束縛系の反応におけるスピン軌道ポテンシャル
　　　　　　　　　　　　　　　　　　　　　原子核表面

6He, 8He : 
　　典型的な弱束縛中性子過剰核

Preliminary

TU, S. Sakaguchi et al., PRC 82 (2010) 021602.
S Sakaguchi, TU et al., PRC 84 (2011) 024604.

E= 71A MeV

E= 71A MeV

S. Sakaguchi, PhD thesis.
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22O(p,2p) spectrum (expected)
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Perspective at RIBF
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 Z=28 (Nickel) 
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(Oxygen)

1) Neutron- and proton-rich oxygen isotopes
2) Heavier nuclei (ex. Nickel)
3) (p,2p) + (p,pn)
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Summary

Spin-orbit coupling in nuclei should be revisited.
    Tensor and 3N interactions play central roles.

Experiments to determine ΔELS in oxygen isotopes are ongoing:
                                              a direct measure of the spin-orbit coupling

18O(p,2p) @RCNP

ΔELS(1p,18O) = 6.5 MeV    <  7 MeV in 16O

・ One should pay attention to fragmented strengths.
・ Spin-asymmetry is useful for unambiguous Jπ determination

14,22−24O(p,2p) @RIBF in near future
       Polarized proton target can be used for the spin-asymmetry measurement 
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