Pions and tensor force in heavy quark hadrons

Atsushi Hosaka Research Center for Nuclear Physics (RCNP), Osaka University

With S. Ohkoda, Y. Yamaguchi, S. Yasui and AH

Contents

1. Introduction

From Yukawa to Nambu Problems in hadron physics

2. Heavy Quark Hadrons

Heavy *exotic* baryons and mesons

as hadronic *Molecules*

- **Z**_b: Recently observed at Belle
- 3. Summary

1. Introduction

What binds the protons and nucleon? 1934 at Osaka Univ

• Finite (long) range

$$\Delta \phi = 0 \implies (\Delta + m_{\pi}^2)\phi = 0$$
$$m_{\pi} \sim \frac{1}{\langle r \rangle} \sim 200 \text{ MeV} \quad \text{This is light}$$

H. Yukawa

• Pseudoscalar: $J^{P} = 0^{T}$

Spontaneous breaking of chiral symmetry

(1) Light bare quarks=> Massive constituent quarks

(2) Appearance of the *massless pion*

Problems in hadron physics

 $R(s) = \sigma(e^+e^- \rightarrow hadrons, s) / \sigma(e^+e^- \rightarrow \mu^+\mu^-, s).$

Problems in hadron physics

 $R(s) = \sigma(e^+e^- \rightarrow hadrons, s) / \sigma(e^+e^- \rightarrow \mu^+\mu^-, s).$

Threshold region

2011 Oct. 21

2. Heavy Quark Hadrons

u	С	t
d	S	b

Light ~ q Heavy ~ Q

π: ud^{bar}, etcJP = 0-ρ:JP = 1-

P(0-) and **P*(1-)**

- $\overline{\mathbf{D}}$: C^{bar} u, etc JP = 0- $\overline{\mathbf{D}}^*$: JP = 1-
 - **B**: B^{bar} u, etc JP = 0-**B**^{*}: JP = 1-

Pions appear where light quarks are

π-Yukawa vertex

πDD, πBB vertex is forbidden
BUT πDD*, πD*D* (πBB*, πB*B*) are allowed

$$\mathcal{L}_{vHH} = -i\beta \operatorname{Tr} \left[H_b v^{\mu}(\rho_{\mu})_{ba} \bar{H}_a \right] + i\lambda \operatorname{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu}(\rho)_{ba} \bar{H}_a \right]$$
$$H_a \sim q_a \bar{Q} = \frac{1+\psi}{2} \left[P_{a\mu}^* \gamma^{\mu} - P_a \gamma_5 \right] ,$$
$$\bar{H}_a \sim \gamma_0 (q_a \bar{Q})^{\dagger} \gamma_0 = \gamma_0 H_a^{\dagger} \gamma_0$$
$$A_{ab}^{\mu} = \frac{1}{2} (\xi^{\dagger} \partial^{\mu} \xi - \xi \partial^{\mu} \xi^{\dagger}) \simeq \frac{\imath}{f_{\pi}} \partial^{\mu} \hat{\pi}_{ab}$$
10

Yamaguchi, Ohkoda,Yasui, Hosaka Phys.Rev.D84:014032,2011. e-Print: 1105.0734 [hep-ph]

$$m_{K^*} - m_K \sim 400 \ MeV$$

 $m_{D^*} - m_D \sim 140 \ MeV$
 $m_{B^*} - m_B \sim 35 \ MeV$

Heavy quark symmetry Degeneracy SD mixing

	$\bar{D}N(\pi ho\omega)$	$BN(\pi\rho\omega)$
E_B [MeV]	2.14	23.04
$\langle r^2 \rangle^{1 \over 2} ~[{ m fm}]$	3.2	1.2

Exotic P^(*)N molecules

- Pion exchange potential dominates
- Tensor force causes SD mixing for heavy Q systems => Strong attraction
- These features are for m_Q ≥ m_C

Z_b resonance at **Belle** KEK

Exotic hadrons (mesons)

	State	Mass (MeV)	Width (MeV)	Decay	Production
	Ys(2175)	2175±8	58±26	ff ₀	ISR
	X(3872)	3871.84±0.33	<0.95	J/ypp, J/yg	B decay
	X(3872)	3872.8 +0.7/-0.6	3.9 +2.8/-1.8	D*0D0	B decay
	Z(3940)	3929±5	29±10	DD	gg
	X(3940)	3942±9	37±17	DD*	Double-charm
	Y(3940)	3942±17	87±34	J/yw	B decay
	Y(4008)	4008 +82/-49	226 +97/-80	Ј/урр	ISR
	Z(4051)+	4051 +24/-43	82 +51/-28	pc _{c1}	B decay
	X(4160)	4156±29	139 +113/-65	D*D*	Double-charm
	Z(4248)+	4248 +185/-45	177 +320/-72	pc _{c1}	B decay
	Y(4260)	4264±12	83±22	J/ypp	ISR
	Y(4350)	4361±13	74±18	y'pp	ISR
\rightarrow	Z(4430)+	4433±5	45 +35/-18	y'p	B decay
	Y(4660)	4664±12	48±15	y'pp	ISR
	Y _b (10890)	10889.6±2.3	54.7 +8.9/-7.6	ppƳ(nS)	e⁺e⁻ annihilation
	Y(3915)	3915±4	17±10	J/yw	gg
	X(4350)	4350 +4.7/-5.1	13 +18/-14	J/yf	gg
Twin	h _b (1P)	9898.3±1.5		MM(pp)	$\Upsilon(5S)/Y_{b}$ decay
	h _b (2P)	10259.3 +1.6/-1.2		MM(pp)	Ƴ(5S) /Y _b decay
	Z _b (10610)	10608.4±2.0	15.6±2.5	$(\Upsilon(nS) \text{ or } h_b)p$	$\Upsilon(5S)/Y_{b}$ decay
2011 Nov.	Z _b (10650)	10653.2±1.5	14.4±3.2	$(\Upsilon(nS) \text{ or } h_b)_P$	$\Upsilon(5S)/Y_{b}$ decay

Invariant mass of πY(nS)

What are interesting?

Heavy quark limit -> Heavy quark spin is conserved

What are interesting?

Heavy quark limit -> Heavy quark spin is conserved

 $h_h \pi$

$B^{(*)}B^{(*)}$ classification (I = 1)

J^{PC}	components		exoticness	
		I = 0	I = 1	
0++	${ m B}ar{ m B}({}^1S_0),{ m B}^*ar{ m B}^*({}^1S_0),{ m B}^*ar{ m B}^*({}^5D_0)$	$\chi_{ m b0}$	\checkmark	
1+-	$\frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* - \mathbf{B}^*\bar{\mathbf{B}} \right) ({}^3S_1), \ \frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* - \mathbf{B}^*\bar{\mathbf{B}} \right) ({}^3D_1), \ \mathbf{B}^*\bar{\mathbf{B}}^* ({}^3S_1), \ \mathbf{B}^*\bar{\mathbf{B}}^* ({}^3D_1)$	h_b	\mathbf{Z}_{b}	
1++	$\frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) ({}^3S_1), \ \frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) ({}^3D_1), \ \mathbf{B}^*\bar{\mathbf{B}}^* ({}^5D_1)$	$\chi_{ m b1}$	\checkmark	
2^{++}	$B\bar{B}(^{1}D_{2}), \ \frac{1}{\sqrt{2}}\left(B\bar{B}^{*}+B^{*}\bar{B}\right)(^{3}D_{2}), \ B^{*}\bar{B}^{*}(^{1}D_{2}), \ B^{*}\bar{B}^{*}(^{5}S_{2}), \ B^{*}\bar{B}^{*}(^{5}D_{2}), \ B^{*}\bar{B}^{*}(^{5}G_{2})$	$\chi_{ m b2}$		

$B^{(*)}B^{(*)}$ classification (I = 1)

Four states are found

J^{PC}	components		exoticness	
		I = 0	I = 1	
0++	$B\bar{B}(^{1}S_{0}) B^{*}\bar{B}^{*}(^{1}S_{0}), B^{*}\bar{B}^{*}(^{5}D_{0})$	$\chi_{ m b0}$	\checkmark	
1+-	$\frac{1}{\sqrt{2}} \left(\mathrm{B}\bar{\mathrm{B}}^* - \mathrm{B}^*\bar{\mathrm{B}} \right) ({}^3S_1), \ \frac{1}{\sqrt{2}} \left(\mathrm{B}\bar{\mathrm{B}}^* - \mathrm{B}^*\bar{\mathrm{B}} \right) ({}^3D_1), \ \mathrm{B}^*\bar{\mathrm{B}}^* ({}^3S_1), \ \mathrm{B}^*\bar{\mathrm{B}}^* ({}^3D_1) \right)$	h _b	Z_b	
1++	$\sum_{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) \left({}^3S_1 \right), \frac{1}{\sqrt{2}} \left(\mathbf{B}\bar{\mathbf{B}}^* + \mathbf{B}^*\bar{\mathbf{B}} \right) \left({}^3D_1 \right), \mathbf{B}^*\bar{\mathbf{B}}^* \left({}^5D_1 \right)$	$\chi_{ m b1}$	\checkmark	
2^{++}	$B\bar{B}(^{1}D_{2}), \frac{1}{\sqrt{2}} (B\bar{B}^{*} + B^{*}\bar{B}) (^{3}D_{2}), B^{*}\bar{B}^{*}(^{1}D_{2}), B^{*}\bar{B}^{*}(^{5}S_{2}) B^{*}\bar{B}^{*}(^{5}D_{2}), B^{*}\bar{B}^{*}(^{5}G_{2})$	$\chi_{ m b2}$	\checkmark	

More for I = 0 but with exotic J^{PC}

Ohkoda, Yamaguchi, Yasui and Hosaka, in preparation

Summary

- In the threshold region, **light quarks** appear and the **pion** starts to play.
- Exotic baryons are very likely to exist in the heavy quark region, m_Q ≥ m_c, as a hadronic molecule.
- The Z_b may well be a BB molecule bound by the pion