Shan-Gui Zhou (周善贵)

Institute of Theoretical Physics (ITP), Chinese Academy of Sciences (CAS), Beijing (中国科学院理论物理研究所)

Center of Theoretical Nucl. Phys., National Lab. of Heavy Ion Accelerator, Lanzhou (兰州重离子加速器国家实验室原子核理论中心)

•List of groups

•Highlights of recent results

•Development of theoretical models

RCNST Steering meeting Nov. 1, 2011, Beihang Univ.

- In 32 cities: 38 in Beijing, 11 in Lanzhou, 4 or more in Nanjing, Shanghai, Tianjin, Huzhou, Guilin, & Hefei
- In 53 institutions: only one in 22 institutions
- 24 female (about 20%)
- International collaborations

Highlights: Effect of tensor force

PRL 105, 072501 (2010) PHYSICAL REVIEW LETTERS

Ex (MeV)

Effect of the Tensor Force on the Charge Exchange Spin-Dipole Excitations of ²⁰⁸Pb

C. L. Bai,^{1,2} H. Q. Zhang,^{1,2} H. Sagawa,³ X. Z. Zhang,¹ G. Colò,⁴ and F. R. Xu²

Bai_Sagawa_Zhang_Colo_Xu2009_PLB675-28 Bai_Zhang_Sagawa_Zhang_Colo_Xu2010_PRL105-072501

Highlights: α decay of superheavy nuclei

PRL 107, 012501 (2011)

PHYSICAL REVIEW LETTERS

week ending 1 JULY 2011

Correlation between α -Decay Energies of Superheavy Nuclei Involving the Effects of Symmetry Energy

Jianmin Dong,^{1,2,3,4} Wei Zuo,^{1,3,*} and Werner Scheid⁴

In general, if one selects $\xi = xZ + yN$ and β as variables, the relationship between the Q values of α decay can be written as

$$Q_{2} = Q_{1} - (\beta_{2} - \beta_{1}) \left\{ \frac{2^{5/3}}{9} a_{c} \xi^{2/3} [(1 - \beta)x + (1 + \beta)y]^{-5/3} \times [(1 + \beta - 2\beta^{2})x + (11 + 5\beta + 2\beta^{2})y] + 8a_{sym}\beta \right\},$$
(6)

where x and y are integers and $|x|^2 + |y|^2 \neq 0$ with $Z = (1 - \beta)\xi/[(1 - \beta)x + (1 + \beta)y]$ and $N = (1 + \beta)\xi/[(1 - \beta)x + (1 + \beta)y]$. Here only the differences of the

Dong_Zuo_Gu_Wang_Peng2010_PRC81-064309 Dong_Zuo_Scheid2011_PRL107-012501

Highlights: Antimagnetic rotation (AMR)

PRL 107, 122501 (2011) PHYSICAL REVIEW LETTERS

Antimagnetic Rotation Band in Nuclei: A Microscopic Description

P.W. Zhao (赵鹏巍),¹ J. Peng (彭婧),² H.Z. Liang (梁豪兆),¹ P. Ring,^{1,3} and J. Meng (孟杰)^{1,4,5} 16 0.16 J ¹⁰⁵Cd ¹⁰⁵Cd 0.3 MeV 0.7 MeV 0.12 12 $\mathbf{J}_{\mathbf{v}}$ 0.08 B(E2) [e²b²] ۲× [لاً] 8 60 γ (deg) 0.04 with pol. no pol. Ω = **[0.2, 0.7**] 20 4 0.00 Exp. with pol. 0.2 no pol. 0.0 0.1 -0.04 ß 0 12 16 18 -8 14 4 20 22 n $J_{7}[\hbar]$ l [ħ]

Peng_Meng_Ring_Zhang2008_PRC78-024313 Zhao_Zhang_Peng_Liang_Ring_Meng2011_PLB699-181 Zhao_Peng_Liang_Ring_Meng2011_PRL105-122501

- Covariant density functional theory, tilted axis cranking
 - First microscopic & self-consistent descrip.

Development of theoretical models

- Shell models
 - ➢ No-core MCSM
 - Angular momentum projected SM
 - Cranked SM
- Density functional Theories
 - Skyrme, Gogny HF (HFB); +RPA; +Cranking
 - Covariant DFT
- Transport models
 - Macroscopic: Dinuclear system models; fluctuation-dissipation models
 - Microscopic: QMD; BUU; time-dep. HF
- Many others
 - Theory of reaction with unstable nuclei
 - Microscopic theory of alpha decay
 - Mass models or formulas

Covariant density functional theories

To include more correlations CDFT

To be more self-consistent

Covariant density functional theories

Covariant density functional theories

Magnetic rot. & chirality RMF w/ γ Configuration-fixed Tilted axis cranking **Low-Espec. & phase trans.** RMF w/ γ Angular momentum proj. 5-dim. Bohr Hamiltonian Giant/pygmy resonances RMF-RPA RHF-RPA

Email: sgzhou@itp.ac.cn URL: www.itp.ac.cn/~sgzhou