

Observation of Electron-Antineutrino Disappearance at Daya Bay

Liang Zhan, IHEP, China On behalf of the Daya Bay Collaboration NPB 2012, September 23-25, 2012 – Shenzhen, China

Three neutrino mixing

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & e^{-i\delta} & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\rho} & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} \theta_{23} = 45^{\circ} & \theta_{13} = ? & \theta_{23} = 34^{\circ} \\ \text{Atmospheric} & \text{Reactor} & \text{Solar} \\ \text{Accelerator} & \text{Accelerator} & \text{Reactor} \end{pmatrix}$$

- θ₁₃ is the only mixing angle unknown previously.
- Daya Bay experiment aimed to measure sin²2θ₁₃ to 0.01 or better at 90% C.L.

Past measurement of $sin^2 2\theta_{13}$

- Palo Verde & CHOOZ: only upper limit.
- Global fit (solar + reactor) suggests sin²2θ₁₃ > 0.
- T2K, MINOS, and Double Chooz indicate sin²2θ₁₃ > 0.
- No results > 2.5 σ for sin²2 θ_{13} > 0 before Daya Bay.

Precision measurement at reactors

- Benefits of reactor
 - Free and pure antineutrino source.
 - No relation with CP phase and matter effect.
- Uncertainties reduction
 - Near-far relative measurement to reduce reactor related errors.
 - 'Identical' and multiple detector modules to verify and reduce detector related errors.
 - Good shielding and enough overburden to reduce backgrounds.

The Daya Bay experiment

Antineutrino detector

- Three zones structure:
 - Target: 20 t 0.1% Gd-loaded scintillator,
 - γ-catcher: 20 t scintillator
 - Buffer shielding: mineral oil
- Top and bottom optical reflectors
 double the photon coverage.
- 192 8" PMTs collect ~163 p.e./MeV

Inverse beta decay in GdLS:

6

Assembly of antineutrino detector

Interior of antineutrino detector

Automatic calibration system

- Three z axis
 - At the center: time evolution, energy scale, non-linearity
 - At the edge: efficiency, spatial response
 - In the γ-catcher: efficiency, spatial response
- Three sources for each z axis
 - LED: PMT gain, relative QE and time offset
 - ⁶⁸Ge (2x0.511 MeV γs): positron threshold, non-linearity
 - ²¹⁴Am-¹³C + ⁶⁰Co: neutron capture time, energy scale, response function
- Once every week
 - 3 axis, 5 points in Z, 3 sources

Key to understanding detector and reducing systematic error

Muon veto system

- Water Cerenkov detector
 - Two layers: inner (> 1.5m) and outer (1m) layers
 - Also for shielding
 - 288 8" PMTs in each near hall
 - 384 8" PMTs in Far Hall
- 4-layer RPC modules above pool
 - 54 modules in each near hall
 - 81 modules in Far Hall
 - 2 telescope modules/hall

Two ADs installed in Hall 1

One AD installed in Hall 2

Three ADs installed in Hall 3

Data Period

A. Two Detector Comparison: arXiv:1202:6181

- Sep. 23, 2011 Dec. 23, 2011
- Side-by-side comparison of 2 detectors in Hall 1
- Demonstrated detector systematics better than requirements.
- Nucl. Inst. and Meth. A 685 (2012), pp. 78-97

B. First Oscillation Result: arXiv:1203:1669

- Dec. 24, 2011 Feb. 17, 2012
- All 3 halls (6 ADs) operating
- First observation of $\bar{\nu}_e$ disappearance
- Phys. Rev. Lett. 108, 171803 (2012)

C. Updated result:

- Dec. 24, 2011 May 11, 2012
- More than 2.5x the previous data set
- To be submitted to Chinese Physics C

Energy calibration and reconstruction

- Low-intensity LED → PMT gains are stable to 0.3%
- ⁶⁰Co at the detector center \rightarrow raw energies
 - Correct small (0.2%) time dependence
- ⁶⁰Co at different positions in detector
 - Correct spatial dependence
- Calibrate energy scale using neutron capture peak

→0.12% efficiency difference among detectors

PMT flashers

• PMT spontaneous light, rejected by hit pattern discriminator

Event signature and backgrounds

- Signature:
 - Prompt: e+, E: 1-10 MeV,
 - Delayed: n, E: 2.2 MeV@H, 8 MeV@Gd
 - Capture time: 28 μs in 0.1% Gd-LS

- Uncorrelated: random coincidence of γγ, γn & nn
 - γ from U/Th/K/Rn/Co... in LS, SS, PMT, Rock, ...
 - n from α -n, μ -capture, μ -spallation in LS, water & rock
- Correlated:
 - Fast neutrons: prompt n scattering, delayed n capture
 - ⁸He/⁹Li: prompt β decay, delayed n capture
 - Am-C source: prompt γ rays, delayed n capture
 - α -n: ¹³C(α ,n)¹⁶O: prompt ¹⁶O de-excitation, delayed n capture

Prompt signal

$$\overrightarrow{v_e} + p \rightarrow \overrightarrow{e^+} + n$$

Delayed signal, Capture on H (2.2 MeV) or Gd (8 MeV), ~30µs

Antineutrino events selection

- Reject PMT flashers
- Prompt positron:
 - $0.7 \text{ MeV} < E_p < 12.0 \text{ MeV}$
- Delayed neutron:
 - $6.0 \text{ MeV} < \text{E}_{d} < 12.0 \text{ MeV}$
- Neutron capture time:
 - $1 \,\mu s < \Delta t_{p-d} < 200 \,\mu s$
- Muon veto
 - Water pool muon: reject 0.6 ms
 - AD tagged muon: reject 1 ms
 - AD shower muon: reject 1 s
- Multiplicity: no other signal > 0.7 MeV in -200 μs to 200 μs of IBD.

Energy and time cut efficiency

Side-by-side comparison

 Multiple detectors allow detailed comparison and crosschecks of systematic error

Two ADs in Hall 1 have functionally identical spectra and response in 0.7-12MeV

Expected rate ratio R(AD1/AD2) = 0.982 (not 1 due to different baseline and target mass) Measured 0.987 ± 0.004 (stat) ± 0.003 (syst)

Backgrounds: accidentals

Accidental background rate calculated by coincidence probability, and rate of the prompt and delayed singles

Backgrounds: ⁹Li/⁸He

- Cosmic μ produces ⁹Li/⁸He in LS
 - $-\beta$ -decay + neutron emitter
- Measurement
 - Time-since-last-muon fit method
 - Improve the precision by preparing muon samples w/ and w/o followed neutrons

 $[\]Delta B/B = 50\%$

Backgrounds: fast neutron

- Cosmic µ produces neutron
 - Prompt: recoiling proton
 - Delayed: neutron capture
- Method I
 - Extend prompt energy cut (E_p < 12 MeV) to 100 MeV.
 - Extrapolate the part in 12-100 MeV to 0.7-12 MeV.
- Method II
 - Extrapolate the tagged fast neutron to the untagged fast neutron using the muon veto inefficiency.

Two methods have consistent result

 $\Delta B/B = 40\%$

$$n_f = n_f^{iws} \cdot (1 - \epsilon_{iws}) + n_f^{ows} \cdot (1 - \epsilon_{ows}) + n_f^{rock}$$

Backgrounds: ²⁴¹Am-¹³C source

- Correlated backgrounds from ²⁴¹Am-¹³C source in ACUs.
 - Neutron inelastic scattering with ⁵⁶Fe + neutron capture on ⁵⁷Fe
 - Simulation shows that correlated backgrounds is 0.2 events/day/AD
 - $\Delta B/B = 100\%$

²⁴¹Am-¹³C source activities constrained by MC/data comparison

Backgrounds: ${}^{13}C(\alpha,n){}^{16}O$

- Identify α sources (²³⁸U, ²³²Th, ²²⁷Ac, ²¹⁰Po) and rates from cascade decays and spatial distribution
- Calculate backgrounds from α rate and (α,n) cross sections

Source	α rate	BG rate
²¹⁰ Po	22Hz at EH1 14Hz at EH2 5Hz at EH3	0.06/day at EH1 0.04/day at EH2 0.02/day at EH3
²²⁷ Ac	1.4 Bq	0.01/day
²³⁸ U	0.07 Bq	0.001/day
²³² Th	1.2 Bq	0.01/day

Backgrounds summary

	Near Halls		Far Hall		
	B/S %	$\sigma_{B/S}$ %	B/S %	$\sigma_{B/S}$ %	$\Delta B/B$
Accidentals	1.5	0.02	4.0	0.05	~1%
Fast neutrons	0.12	0.05	0.07	0.03	~40%
⁹ Li/ ⁸ He	0.4	0.2	0.3	0.2	~50%
²⁴¹ Am- ¹³ C	0.03	0.03	0.3	0.3	~100%
$^{13}C(\alpha, n)^{16}O$	0.01	0.006	0.05	0.03	~50%
Sum	2.1	0.21	4.7	0.37	~10%

The background induced systematic errors of antineutrino rate are 0.21% for near halls and 0.37% for far hall

Event rate summary (to May 11, 2012)

	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.	5470	127.3763	126.2646		
Efficiency	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73±0.10	9.61±0.10	7.55 ± 0.08	3.05 ± 0.04	3.04 ± 0.04	2.93 ± 0.03
Fast neutron (/day)	0.77 ± 0.24	0.77 ± 0.24	0.58 ± 0.33	0.05 ± 0.02	0.05 ± 0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9	±1.5	2.0 ± 1.1			
Am-C corr. (/day)	0.2 ± 0.2					
$^{13}C(\alpha, n)^{16}O(/day)$	0.08 ± 0.04	0.07 ± 0.0 4	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ±3.00	670.87 ±3.01	613.53 ±2.69	$77.57 \\ \pm 0.85$	76.62 ±0.85	74.97 ±0.84

Current uncertainties dominated by statistics

Efficiency and uncertainties

Detector				
	Efficiency	Correlated	Uncorrelated	
Target Protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy cut	90.9%	0.6%	0.12%	
Prompt energy cut	99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	< 0.01%	
Capture time cut	98.6%	0.12%	0.01%	
Gd capture ratio	83.8%	0.8%	< 0.1%	
Spill-in	105.0%	1.5%	0.02%	
Livetime	100.0%	0.002%	< 0.01%	
Combined	78.8%	1.9%	0.2%	

	R	eactor
Correlated		Uncorrelated
Energy/fission	0.2%	Power 0.5%
$\overline{\nu}_e$ /fission	3%	Fission fraction 0.6%
		Spent fuel 0.3%
Combined	3%	Combined 0.8%

For near/far oscillation, only uncorrelated uncertainties are used.

Reactor uncorrelated uncertainty can be reduced by near/far relative measurement (x1/20).

Reactor neutrino flux

calculation.

Nuclei, Vol. 67, No. 10, 1892 (2004)

Daily rate

Discovery of non-zero $sin^2 2\theta_{13}$ (2012.3)

R = 0.940 \pm 0.011 (stat) \pm 0.004 (syst)

5.2 σ for non-zero sin²2 θ_{13} with a 55-day data set

Improved Results (2012.6)

 $R = 0.944 \pm 0.007$ (stat) ± 0.003 (syst)

 $sin^2 2\theta_{13} = 0.089 \pm 0.010(stat) \pm 0.005(syst)$

With 2.5x more statistics, an improved measurement to θ_{13} 7.7 σ for non-zero sin²2 θ_{13}

Summary

• Daya Bay has unambiguously observed reactor electronantineutrino disappearance.

R = 0.944 \pm 0.007 (stat) \pm 0.003 (syst)

- In a 3-neutrino framework, the observed disappearance leads to mixing angle $sin^2 2\theta_{13} = 0.089 \pm 0.010$ (stat) ± 0.005 (syst)
- All 8 antineutrino detectors have been installed. Now conducting comprehensive calibration for spectral shape analysis.
- The estimated $\sin^2 2\theta_{13}$ precision is 5% after 3 years of Daya Bay data.
- Pursue other physics goals, such as precise reactor v_e flux and spectrum, and measurement of Δm_{31}^2 (~ 5% precision)

Backup slides

Target Mass & No. of Protons

- Target mass during the filling measured by the load cell, precision ~ 3kg→0.015%
- Cross checked by Coriolis flow meters, precision ~0.1%
- Actually target mass:

 $M_{target} = M_{fill} - M_{overflow}$ - M_{bellow}

- M_{overflow} and M_{bellows} are determined by geometry.
- M_{overflow} is monitored by sensors

Quantity	Relative	Absolute
Free protons/Kg	neg.	0.47%
Density	neg.	0.0002%
Total mass	0.015%	0.015%
Bellows	0.0025%	0.0025
Overflow tank	0.02%	0.02%
Total	0.03%	0.47%

Baseline survey

- Survey:
 - Methods: GPS, Total Station, laser tracker, level instruments, ...
 - Results are compared with design values, and NPP coordinates
 - Data processed by three independent software
- Results: sum of all the difference less than 28 mm
- Uncertainty of the fission gravity from simulation
 - 2 cm horizontally
 - 20 cm vertically
- The combined baseline error is 35mm, corresponding to a negligible reactor flux uncertainty (<0.02%)

