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Three neutrino mixing

• θ13 is the only mixing angle 
unknown previously.

• Daya Bay experiment aimed to 
measure sin22θ13 to 0.01 or 
better at 90% C.L. 
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Past measurement of sin22θ13

• Palo Verde & CHOOZ: only 
upper limit.

• Global fit (solar + reactor) 
suggests sin22θ13 > 0. 

• T2K, MINOS, and Double 
Chooz indicate sin22θ13 > 0.

• No results > 2.5σ for  

sin22θ13 > 0 before Daya Bay.

3



Precision measurement at reactors

• Benefits of reactor
– Free and pure antineutrino 

source.
– No relation with CP phase and 

matter effect.

• Uncertainties reduction
– Near-far relative measurement 

to reduce reactor related 
errors.

– ‘Identical’ and multiple 
detector modules to verify and 
reduce detector related errors. 

– Good shielding and enough 
overburden to reduce 
backgrounds.
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The Daya Bay experiment

6 reactor cores
17.4 GWth in total

6 detector modules installed
Relative measurement by 2 
near halls and 1 far hall

Adjacent mountains 
provide cosmic shielding
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Antineutrino detector
• Three zones structure:

– Target: 20 t 0.1% Gd-loaded scintillator

– γ-catcher: 20 t scintillator

– Buffer shielding: mineral oil

• Top and bottom optical reflectors 
double the photon coverage.

• 192 8’’ PMTs collect ~163 p.e./MeV

Inverse beta decay in GdLS:
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Assembly of antineutrino detector
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Interior of antineutrino detector
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Automatic calibration system

• Three z axis
– At the center: time evolution, energy 

scale, non-linearity
– At the edge: efficiency, spatial response
– In the γ-catcher: efficiency, spatial 

response
• Three sources for each z axis 

– LED: PMT gain, relative QE and time 
offset 

– 68Ge (2x0.511 MeV γs): positron 
threshold, non-linearity

– 214Am-13C + 60Co: neutron capture time, 
energy scale, response function

• Once every week
– 3 axis, 5 points in Z, 3 sources  
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Key to understanding detector 
and reducing systematic error



Muon veto system
• Water Cerenkov detector

– Two layers: inner (> 1.5m) 
and outer (1m) layers

– Also for shielding
– 288 8” PMTs in each near 

hall
– 384 8” PMTs in Far Hall

• 4-layer RPC modules above 
pool
– 54 modules in each near 

hall 
– 81 modules in Far Hall
– 2 telescope modules/hall
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Two ADs installed in Hall 1 
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Data taking began 
Aug. 15, 2011



One AD installed in Hall 2
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Data taking began 
Nov. 5, 2011



Three ADs installed in Hall 3
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Data taking began 
Dec. 24, 2011



A. Two Detector Comparison: arXiv:1202:6181
- Sep. 23, 2011 – Dec. 23, 2011
- Side-by-side comparison of 2 detectors in Hall 1
- Demonstrated detector systematics 
better than requirements.

- Nucl. Inst. and Meth. A 685 (2012), pp. 78-97

B. First Oscillation Result: arXiv:1203:1669
- Dec. 24, 2011 – Feb. 17, 2012
- All 3 halls (6 ADs) operating
- First observation of νe disappearance
- Phys. Rev. Lett. 108, 171803 (2012)

C. Updated result: 
- Dec. 24, 2011 – May 11, 2012
- More than 2.5x the previous data set 
- To be submitted to Chinese Physics C  
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Energy calibration and reconstruction
• Low-intensity LED PMT gains are stable to 0.3% 

• 60Co at the detector center raw energies 
– Correct small (0.2%) time dependence  

• 60Co at different positions in detector 
– Correct spatial dependence 

• Calibrate energy scale using neutron capture peak 

0.12% efficiency difference among detectors
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The same non-linearity for all detectors



PMT flashers
• PMT spontaneous light, rejected by hit pattern discriminator 
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Typical hit pattern

~5% PMTs and ~ 5% 
events.

Efficiency 99.98% 
Uncertainty 0.01% 



Event signature and backgrounds

• Signature: 
– Prompt: e+, E: 1-10 MeV, 
– Delayed: n, E: 2.2 MeV@H, 8 MeV@Gd 
– Capture time: 28 μs in 0.1% Gd-LS 

• Five backgrounds identified 
– Uncorrelated: random coincidence of γγ, γn & nn 

• γ from U/Th/K/Rn/Co… in LS, SS, PMT, Rock, … 
• n from α-n, μ-capture, μ-spallation in LS, water & rock 

– Correlated: 
• Fast neutrons: prompt - n scattering, delayed - n capture 
• 8He/9Li: prompt - β decay, delayed - n capture 
• Am-C source: prompt - γ rays, delayed - n capture 
• α -n: 13C(α,n)16O: prompt - 16O de-excitation, delayed – n capture 
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Antineutrino events selection
• Reject PMT flashers
• Prompt positron: 

– 0.7 MeV < Ep < 12.0 MeV
• Delayed neutron:

– 6.0 MeV < Ed < 12.0 MeV
• Neutron capture time:

– 1 μs < Δtp-d < 200 μs
• Muon veto

– Water pool muon: reject 0.6 ms
– AD tagged muon: reject 1 ms
– AD shower muon: reject 1 s

• Multiplicity: no other signal > 0.7 MeV in 
-200 μs to 200 μs of IBD.
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Energy and time cut efficiency

Eff. Corr. Uncorr.

Prompt 90.9% 0.6% 0.12%

Delayed 99.88% 0.10% 0.01%

Capture 
time

98.6% 0.12% 0.01%

19

Systematic error studied by comparing 
MC and data, or AD identicality



Side-by-side comparison
• Multiple detectors allow detailed comparison and cross-

checks of systematic error
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Two ADs in Hall 1 have functionally
identical spectra and response in 
0.7-12MeV

Expected rate ratio R(AD1/AD2) = 0.982 (not 
1 due to different baseline and target mass) 
Measured 0.987 ± 0.004(stat) ± 0.003(syst) 



Backgrounds: accidentals
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AD singles spectrum

Prompt rate
0.7-12 MeV

Delayed rate 
6-12 MeV

Accidental backgrounds rate

Accidental background rate calculated by coincidence probability, and rate of  
the prompt  and delayed singles

Cross check using prompt-delayed 
distance, and off-window coincidence



Backgrounds: 9Li/8He
• Cosmic μ produces  9Li/8He in LS

– β-decay + neutron emitter
• Measurement 

– Time-since-last-muon fit method
– Improve the precision by preparing 

muon samples w/ and w/o followed 
neutrons
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9Li yield fitting

∆B/B = 50%



Backgrounds: fast neutron

• Cosmic μ produces neutron
– Prompt: recoiling proton
– Delayed: neutron capture

• Method I
– Extend prompt energy cut (Ep < 12 

MeV) to 100 MeV.
– Extrapolate the part in 12-100 

MeV to 0.7-12 MeV.

• Method II
– Extrapolate the tagged fast 

neutron to the untagged fast 
neutron using the muon veto 
inefficiency.
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∆B/B = 40%

Two methods have consistent result



Backgrounds: 241Am-13C source
• Correlated backgrounds from 241Am-13C source in ACUs.

– Neutron inelastic scattering with 56Fe + neutron capture on 57Fe
– Simulation shows that correlated backgrounds is 0.2 

events/day/AD
– ∆B/B = 100%
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Neutron capture 
vertex in simulation

241Am-13C  source activities  constrained 
by MC/data comparison



Backgrounds: 13C(α,n)16O
• Identify α sources (238U, 232Th, 227Ac, 210Po) and rates 

from cascade decays and spatial distribution

• Calculate backgrounds from α rate and (α,n) cross 
sections 
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232Th

238U

227Ac

227Ac
total

Source α rate BG rate
210Po 22Hz at EH1 

14Hz at EH2
5Hz at EH3

0.06/day at EH1
0.04/day at EH2
0.02/day at EH3

227Ac 1.4 Bq 0.01/day
238U 0.07 Bq 0.001/day
232Th 1.2 Bq 0.01/day



Backgrounds summary
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Near Halls Far Hall
B/S  % σB/S % B/S  % σB/S % ∆B/B

Accidentals 1.5 0.02 4.0 0.05 ~1%

Fast neutrons 0.12 0.05 0.07 0.03 ~40%
9Li/8He 0.4 0.2 0.3 0.2 ~50%
241Am-13C 0.03 0.03 0.3 0.3 ~100%
13C(α, n)16O 0.01 0.006 0.05 0.03 ~50%
Sum 2.1 0.21 4.7 0.37 ~10%

The background induced systematic errors of 
antineutrino rate are 0.21% for near halls and 
0.37% for far hall



Event rate summary (to May 11, 2012)
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AD1 AD2 AD3 AD4 AD5 AD6

Antineutrino candidates 69121 69714 66473 9788 9669 9452

DAQ live time (day) 127.5470 127.3763 126.2646

Efficiency 0.8015 0.7986 0.8364 0.9555 0.9552 0.9547

Accidentals (/day) 9.73±0.10 9.61±0.10 7.55±0.08 3.05±0.04 3.04±0.04 2.93±0.03

Fast neutron (/day) 0.77±0.24 0.77±0.24 0.58±0.33 0.05±0.02 0.05±0.02 0.05±0.02
8He/9Li (/day) 2.9±1.5 2.0±1.1 0.22±0.12

Am-C corr. (/day) 0.2±0.2
13C(α, n)16O (/day) 0.08±0.04 0.07±0.0

4
0.05±0.03 0.04±0.02 0.04±0.02 0.04±0.02

Antineutrino rate (/day) 662.47
±3.00

670.87
±3.01

613.53
±2.69

77.57
±0.85

76.62
±0.85

74.97
±0.84

Current uncertainties dominated by statistics



Efficiency and uncertainties
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For near/far oscillation, only 
uncorrelated uncertainties 
are used.

Largest uncertainty studied 
by AD asymmetries

Reactor uncorrelated uncertainty 
can be reduced by near/far 
relative measurement (x1/20).



Reactor neutrino flux

• Reactor neutrino spectrum
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Others < 0.3%

Fission fraction fi

Fission energy ei

Kopeikin et al, Physics of Atomic 
Nuclei, Vol. 67, No. 10, 1892 (2004) 

Thermal power Wth provided by reactor 
power plant

Si(Ev): isotope spectra of 235U, 239Pu, 
241Pu from ILL measurement, 238U from 
calculation. 



Daily rate
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Obvious deficit for far site



Discovery of non-zero sin22θ13 (2012.3) 
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R = 0.940 ± 0.011 (stat) ± 0.004 (syst)
sin22θ13=0.092±0.016(stat)±0.005(syst)

5.2σ for non-zero sin22θ13 with a 55-day data set



Improved Results (2012.6) 
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R = 0.944 ± 0.007 (stat) ± 0.003 (syst) sin22θ13=0.089±0.010(stat)±0.005(syst) 

With 2.5x more statistics, an improved measurement to θ13
7.7σ for non-zero sin22θ13



Summary 

• Daya Bay has unambiguously observed reactor electron-
antineutrino disappearance.

R = 0.944 ± 0.007 (stat) ± 0.003 (syst)

• In a 3-neutrino framework, the observed disappearance leads to 
mixing angle

sin22θ13 = 0.089 ± 0.010 (stat) ± 0.005 (syst)

• All 8 antineutrino detectors have been installed. Now conducting 
comprehensive calibration for spectral shape analysis. 

• The estimated sin22θ13 precision is 5% after 3 years of Daya Bay 
data.

• Pursue other physics goals, such as precise reactor νe flux and 
spectrum, and measurement of ∆m2

31 (~ 5% precision) 
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Backup slides
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Target Mass & No. of Protons
• Target mass during the filling measured by 

the load cell, precision ~ 3kg0.015%
• Cross checked by Coriolis flow meters, 

precision ~0.1%
• Actually target mass:

• Moverflow and Mbellows are determined by 
geometry.

• Moverflow is monitored by sensors
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Quantity Relative Absolute

Free protons/Kg neg. 0.47%

Density neg. 0.0002%

Total mass 0.015% 0.015%

Bellows 0.0025% 0.0025

Overflow tank 0.02% 0.02%

Total 0.03% 0.47%



Baseline survey
• Survey:

– Methods: GPS, Total Station, laser tracker, level instruments, …
– Results are compared with design values, and NPP coordinates
– Data processed by three independent software

• Results: sum of all the difference less than 28 mm 
• Uncertainty of the fission gravity from simulation 

– 2 cm horizontally
– 20 cm vertically

• The combined baseline error is 35mm,  
corresponding to a negligible reactor 
flux uncertainty (<0.02%)
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