

The KATRIN Neutrino Mass Experiment Joachim Wolf (KATRIN Collaboration)

Institute of Experimental Nuclear Physics

NPB 2012

Motivation: v's in Astroparticle Physics

Karlsruhe Institute of Technology

Current limits for the neutrino mass

 β -decay kinematics close to endpoint E₀: model independent measurement of m(v_e), based solely on kinematic parameters & energy conservation

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_\beta^2} \cdot F(E, Z) \cdot \theta(E_0 - E - m_\beta)$$

 β -decay kinematics close to endpoint E₀: model independent measurement of m(v_e), based solely on kinematic parameters & energy conservation

 β -decay kinematics close to endpoint E₀: model independent measurement of m(v_e), based solely on kinematic parameters & energy conservation

Principle of the MAC-E-Filter A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345 Magnetic Adiabatic Collimation + Electrostatic Filter Two supercond solenoids compose magnetic guiding field **Electron source (T₂) in left solenoid** Detector in right solenoid B_sB_{ma} B. T₂ source detector

Principle of the MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter

- Two supercond solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- Detector in right solenoid
- e⁻ magnetically guided
 - cyclotron motion

10

- adiabatic transformation:
 - $\mu = E_{\perp}/B = const.$ (magn. moment)
 - parallel e⁻ beam (analysing plane)

electrodes

Principle of the MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter

- Two supercond solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- Detector in right solenoid
- e⁻ magnetically guided
 - cyclotron motion

11

23.09.2012

- adiabatic transformation:
 - $\mu = E_{\perp}/B = const.$ (magn. moment)
 - parallel e⁻ beam (analysing plane)
- Energy analysis by electric field

- $\Delta E = E \cdot B_{min}/B_{max}$ (magn. moment) - $\Delta E = E \cdot A_{src}/A_{ana}$ (magn. fluxtube) T₂ source

potential

detector

The KATRIN Experiment @ KIT

(KArlsruhe TRItium Neutrino experiment)

KATRIN Setup and Requirements

KATRIN Setup and Requirements

KATRIN tritium throughput per year is equivalent to ITER fusion facility

- tritium source is operated as closed cycle:
- thoughput of 40 kg/year

Pre-spectrometer pre-filter for electrons

prototype for main spectrometer

vacuum design

electro-magnetic design

background suppression

Main Spectrometer

- Ultra-precise energy analysis of electrons close to endpoint E₀
 - energy resolution: $\Delta E = 0.93 \text{ eV} (0\% \rightarrow 100\% \text{ transmission}) @ 18.6 \text{ keV}$
- Features:
 - Ø = 10 m, length = 24 m, surface = 690 m², volume = 1240 m³,
 - p < 10⁻¹¹ mbar (world's largest UHV recipient)
 - inner wire electrode system & external Helmholtz-type air coil system

large Helmholtz coil system

LFCS

main spectrometer vessel EMCS

Ø = 12.7 m

Inner Electrode System – Objectives

double-layered inner wire electrode system

#1: background suppression

inelastic reactions of cosmic μ

Iow-energy secondary electrons from the 690 m² inner surface are repelled electrostatically

#2: fine forming of retarding field

- precision HV power supplies: intrinsic HV precision ~1 ppm
- dipole/ECR mode: eject particles stored in Penning traps

Main Spectrometer: Inner Electrode System

KASSIOPEIA: signal & background

KASSIOPEIA: KATRIN simulation code for electron trajectories

Radon induced background

Passive background reduction: LN2-cooled baffles to cryosorb ²¹⁹Rn

KASSIOPEIA: background reduction

^{219,220}Rn emanation from bulk material of vessel: need active bg-suppression

KATRIN sensitivity

Sterile neutrinos: (sub-)eV scale

- Hannestad et al. initial estimates of KATRIN sensitivity for sterile v's assume very light active neutrinos m(v_e) ~ 0 eV, mixed with sterile m (v_s)
- 3σ detection of 'kink' by $m_{sterile}$ if active-sterile mixing $|U_{es}|^2 \ge 0.055$
- 3+2 scenarios can also be disentangled, measure absolute value m (v_s)

Sterile neutrinos in astroparticle physics

Cosmology: role of sterile v's as warm dark matter

- idea: sterile v's in the 1-10 keV mass regime would constitute warm dark matter

DM & dwarf statellites

Conclusions

- Studies of β-decay/EC kinematics
 - only model-independent method to determine absolute v-mass scale
 - KATRIN will probe cosmologically relevant scale down to $m(v_e) = 200 \text{ meV}$
 - studies for phase II to go beyond this value

Calorimetric experiments will provide an independent check

- MARE: ¹⁸⁷Re (β-decay); ECHO: ¹⁶³Ho (electron capture)
- advantage: scalable approach
- still a lot of R&D work for $m(v_e) = 200 \text{ meV}$
- New ideas: Project 8 and others
- KATRIN next steps:
 - electromagnetic tests of main spectrometer (start in Oct. 2012)
 - commissioning of CPS (end of 2013) and WGTS (end of 2014)
 - beginn of neutrino measurement: 2015

Conclusions

The complete picture of neutrino masses is obtained only by comparing high-precision results from direct neutrino mass searches with $0\nu\beta\beta$ experiments and cosmological studies

Discussion

Cosmology and neutrino mass

- massive neutrinos contribute to hot dark matter
- kinematic effect of HDM on structure formation
- sensitive to total energy density of neutrinos (Σm_i)
- different models using various sets of parameters and data
- minimal Λ CDM plus $m_v : \Sigma m_i < 0.4 \text{ eV} (\text{CMB} + \text{LSS})$
- current bounds: $0.3 \text{ eV} \leq \Sigma m_j \leq 2 \text{ eV}$

S. Hannestad: arXiv:1007.0658v2

Cosmology and neutrino mass

Future probes of neutrino mass:

- new galaxy redshift surveys (BOSS, HETDEX, WFMOS,...)
- weak lensing surveys
- CMB: PLANCK satellite (launched: 14.May 2009)
- Lyman- α forest measurements (BOSS)
- cluster surveys
- 21 cm measurements

Expected sensitivity:

- short term (5-7 y): $0.1 \text{ eV} \le \Sigma m_i \le 0.6 \text{ eV}$
- long term (7-15 y): $0.05 \text{ eV} \le \Sigma m_j \le 0.4 \text{ eV}$

S. Hannestad: arXiv:1007.0658v2

Neutrino-less double- β -decay and neutrino mass

O. Cremonesi: arXiv: 1002.1437v1

- 2 decay modes in double-β-decay:
 - normal (2ν2β)
 - $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}_e$
 - allowed by standard model
 - continuous energy spectrum
 - has been observed (t ~ 10⁻¹⁹ 10⁻²¹ y)
 - neutrinoless ($0\nu 2\beta$)
 - $(A,Z) \rightarrow (A,Z+2) + 2\overline{\nu}_e$
 - needs massive Majorana neutrinos
 - energy peak at endpoint
 - τ > 10²⁵ y
 - violation of total lepton number conservation

Neutrino-less double-β-decay and neutrino mass

Measurement: decay rate

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} \cdot \left| M^{0\nu} \right|^2 \cdot \left| m_{\beta\beta} \right|^2$$

 $-G^{0\nu}$ phase space integral

(exactly calculable) $-M^{0\nu}$ nuclear matrix element

(wide range of different calculations)

– m_{etaeta} effective neutrino mass with Majorana phases lpha

(cancellation of mass terms possible)

$$m_{\beta\beta} = \sum_{j=1}^{3} \left| U_{ej} \right|^2 \cdot e^{i\alpha_j} \cdot m_j$$

accuracy limited by nuclear matrix element calculation

Figure 1: Expected $\beta\beta(0\nu)$ half lives for 50 meV effective neutrino mass and different NME calculations: IBM2 [17], YI09 [18], TU08 [19] and SM08 [20]. O. Cremonesi: arXiv: 1002.1437v1

Neutrino-less double- β -decay and neutrino mass

- **Current results:** NN Heidelberg-Moskau (⁷⁶Ge) — - KHDH analysis: counts/keV T_{1/2} = 2.23 x 10²⁵ y (6σ) • $m_{\beta\beta} = 0.32 \pm 0.03 \text{ eV}$ physics beyond the SM ? right-handed weak parameters: 2020 2060 • $<\eta>= 3.05 \pm 0.26 \times 10^{-9}$ 2000 2040 2080 2100 energy, keV • $<\lambda>$ = 6.92 ± 0.58 x 10⁻⁷
- $0\nu 2\beta$ only provides upper limit on neutrino mass

H. V. Klapdor-Kleingrothaus and I. V. Krivoshein, Mod. Phys. Let. A, Vol. 21, No. 20 (2006) 1547

Standard β-decay and neutrino mass
Kinetic measurement of the effective neutrino mass
Fermi's golden rule:

$$\frac{d\Gamma}{dE} = C \cdot F(E) \cdot p \cdot (E + m_e)(E_0 - E) \cdot \sum_i |U_{ei}|^2 \cdot \sqrt{(E_0 - E)^2 - (m_{v_i}^2)}$$

If the energy resolution is much larger than Δm_{ν} we see only an **effective neutrino mass** m_{β} :

$$\sqrt{(E_0 - E)^2 - \sum_i |U_{ei}|^2 \cdot m_{v_i}^2} \quad \text{with} \quad m_\beta^2 = \sum_i |U_{ei}|^2 \cdot m_{v_i}^2$$

measurement: look for missing energy close to the endpoint

- high energy resolution
- high activity source

Measurement of the β-spectrum

Spectrometer (tritium)

- energy selected by electric or magnetic fields
- external β-source
- energy loss due to scattering
- energy resolution 0.93 eV (100%)
- Iow count rate in detector
- Iower energies rejected
- event fraction in last 10 eV: 3.10⁻¹⁰
- present sensitivity: 2 eV
- planned sensitivity: 0.2 eV

Micro-calorimeter (¹⁸⁷Re)

- energy measured by cryogenic bolometer
- β -source = detector
- measures entire β-decay energy
- energy resolution $\approx 5 10 \text{ eV}$ (FWHM)
- full count rate (pile-up !)
- many small detectors needed
- event fraction in last 10 eV: 1.3.10⁻⁷
- present sensitivity: 15 eV
- planned sensitivity I: 2 eV
- planned sensitivity II: 0.2 eV

KATRIN

bolometer experiments for ¹⁸⁷Re

MARE experiment

general strategy to increase sensitivity to sub-eV regime:

- deploy large arrays of cryogenic micro-bolometers up-scaling of source intensity with 1 mg Re \approx 1 decay/s
- avoid pulse pile-up: develop faster detectors
- develop multiplexed read-out technologies
- improve energy resolution to 1 eV-level

MARE-I ~ 109-1010 ß-decays

- set-up small bolometer array: v-mass sensitivity $m(v_e) \sim few eV$
- test & select different isotopes (¹⁶³Ho-EC/¹⁸⁷Re-ß-decay) and read-out/sensor techniques (TES, Si-thermistor, MMC, ...)

MARE-II ~ 10¹⁴ ß-decays

- full set-up, large bolometer array with 10⁴-10⁵ pixels
- aim for statistical v-mass sensitivity $m(v_e) \sim 0.1-0.2 \text{ eV}$

MARE experiment: phase-I

Genova $m(v_e) \sim 2 eV$

- metallic Re absorbers, up to 300
- m = (0.2-0.3) g ↔ ~0.25 Bq
- TES sensors (Ir-Au bi-layer), multiplexed SQUID read-out
- $-\Delta E \sim 11 \text{ eV}$
- τ_{rise} ~ 160 µs

Milano-Bicocca

 $m(v_e) \sim 3-4 \text{ eV}$

electron capture & v-mass

electron capture: non-zero m(v_e) value affects the EC de-excitation spectrum **EC of ¹⁶³Ho is suitable candidate:** ¹⁶³Ho + e⁻ $\rightarrow v_e$ + ¹⁶³Dy^{*} \rightarrow ¹⁶³Dy + E_c

Measuring the Neutrino Mass

3rd approach, proposed recently: Project 8

 source: technique: more details: 	gaseous T ₂ radio-frequency spectroscopy of coherent cyclotron radiation of β decay electrons arXiv:0904.2860v1 [nucl-ex]	
design values:	projected energy resolution: estimated sensitivity on m(v _e):	1 eV 0.1 eV
status:	preparations for a proof-of-principle experiment	

Project 8 collaboration

- Cyclotron radiation from T₂
- first prototype at UW, Seattle

27.2

History of ³H β-decay experiments

Requirements for the vacuum system

- final pressure: < 10⁻¹¹ mbar
- **outgassing:** $< 10^{-12}$ mbar l/s cm² (innere surface: 690 m²)
- effective pumping speed
 - 3000m getter strips: 1 000 000 l/s (H₂ and other active gases)
 - 6 turbo-molecular pumps: 8 400 l/s (all gases)
- max. allowed gasload
 - H₂ < 10⁻⁵ mbar l/s
 - <6 x 10⁻⁶ mbar l/s outgassing vessel:
 - outgassing electrodes:
 - 6 TMPs, beamline, gauges: < 10⁻⁶ mbar l/s
- <3 x 10⁻⁶ mbar l/s
- - non-getterable gases < 10⁻⁷ mbar l/s (hydrocarbons, noble gases,...)

Arrival of the main spectrometer after a voyage of 8800 km around Europe

KATRIN: ≈ 240 double layer wire electrode modules

Systematic uncertainties

- inelastic scatterings of ß's inside WGTS

 requires dedicated e-gun measurements, unfolding techniques for response fct.
- 2. fluctuations of WGTS column density (required < 0.1%)
 - rear detector, Laser-Raman spectroscopy, T=30K stabilisation, e-gun measurements
- 3. transmission function
 - spatial resolved e-gun measurements
- 4. WGTS charging due to remaining ions (MC: φ < 20mV)
 inject low energy meV electrons from rear side, diagnostic tools available
- 5. final state distribution
 - reliable quantum chem. calculations
- 6. HV stability of retarding potential on ~3ppm level required
 - precision HV divider (PTB), monitor spectrometer beamline

some contributions each with $\Delta m_v^2 \le 0.007 \text{ eV}^2$

Statistics

KIT - Institute of Experimental Nuclear Physics

Recent developments in β-spectroscopy

- might be seen by KATRIN
 - if mass of v_s is large enough (for instance LSND neutrinos)
 - mixing with \overline{v}_e is large enough

New ideas

- **Project 8**: measures E_{β} via cyclotron radiation

Monreal, Formaggio, Phys. Rev. D80, 051301(R) (2009)

- search for ultra-low Q value isotopes Kopp, Merle: arXiv: 0911.3329v2
 - decay in excited daughter states
 - partial ionization of parent isotope
- radioactive ions in storage ring
- ultra-cold atoms in trap ($E_{\beta}, p_{\beta}, p_{rec}$)
- direct mass difference and heat

Lindroos et al.: arXiv: 0904.1089

Jerkins et al.: arXiv: 0901.3111v4

Matsuzaki et al.: arXiv: 0908.4163v3

Hamann et al.: arXiv: 1006.5276

Riis, Hannestad: arXiv: 1008.1495