Neutrinoless Double Beta Decay: Neutrinos and Beyond

1

Outline

 $(A,Z) \rightarrow (A,Z+2) + 2 e^{-} (0\nu\beta\beta) \Rightarrow$ Lepton Number Violation

• Standard Interpretation:

Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to $0\nu\beta\beta$ give negligible or no contribution

• Non-Standard Interpretations:

There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

reviews on $0\nu\beta\beta$:

Int. J. Mod. Phys. **E20**, 1833 (2011); Focus issue J. Phys. **G** [1206.2560]

Interpretation of Experiments

Master formula:

$$\Gamma^{0\nu} = G_x(Q,Z) |\mathcal{M}_x(A,Z) \eta_x|^2$$

- $G_x(Q,Z)$: phase space factor
- $\mathcal{M}_x(A, Z)$: nuclear physics
- η_x : particle physics

Interpretation of Experiments

Master formula:

$$\Gamma^{0\nu} = G_x(Q,Z) \, |\mathcal{M}_x(A,Z) \, \eta_x|^2$$

- $G_x(Q,Z)$: phase space factor; calculable
- $\mathcal{M}_x(A, Z)$: nuclear physics; problematic
- η_x : particle physics; interesting

Upcoming/running experiments: exciting time!!

best limit was from 2001...

Name	lsotope	source =	source \neq detector		
		high energy res.	low energy res.	event topology	event topology
AMoRE	¹⁰⁰ M₀	\checkmark	-	-	-
CANDLES	48 Ca	-	\checkmark	-	-
COBRA	116 Cd (and 130 Te)	-	-	\checkmark	-
CUORE	130 Te	\checkmark	-	-	-
DCBA	82 Se or 150 Nd	-	-	-	\checkmark
EXO	136 Xe	-	-	\checkmark	-
GERDA	⁷⁶ Ge	\checkmark	-	-	-
KamLAND-Zen	136 Xe	-	\checkmark	-	-
LUCIFER	82 Se or 100 Mo or 116 Cd	\checkmark	-	-	-
MAJORANA	⁷⁶ Ge	\checkmark	_	_	_
MOON	82 Se or 100 Mo or 150 Nd	-	-	_	\checkmark
NEXT	136 Xe	-	-	\checkmark	-
SNO+	¹⁵⁰ Nd(?)	_	\checkmark	_	-
SuperNEMO	82 Se or 150 Nd	-	-	-	\checkmark
XMASS	136 Xe	-	\checkmark	-	-

multi-isotope determination good for 3 reasons

3 Reasons for Multi-isotope determination

- 1.) credibility
- 2.) test NME calculation

$$\frac{T_{1/2}^{0\nu}(A_1, Z_1)}{T_{1/2}^{0\nu}(A_2, Z_2)} = \frac{G(Q_2, Z_2) |\mathcal{M}(A_2, Z_2)|^2}{G(Q_1, Z_1) |\mathcal{M}(A_1, Z_1)|^2}$$

systematic errors drop out, ratio sensitive to NME model

3.) test mechanism

$$\frac{T_{1/2}^{0\nu}(A_1, Z_1)}{T_{1/2}^{0\nu}(A_2, Z_2)} = \frac{G_x(Q_2, Z_2) |\mathcal{M}_x(A_2, Z_2)|^2}{G_x(Q_1, Z_1) |\mathcal{M}_x(A_1, Z_1)|^2}$$

particle physics drops out, ratio of NMEs sensitive to mechanism

 $\begin{array}{l} \mbox{Experimental Aspects} \\ \mbox{particle physics:} \\ (T_{1/2}^{0\nu})^{-1} \propto \ (\mbox{particle physics})^2 \\ \mbox{experimentally:} \\ (T_{1/2}^{0\nu})^{-1} \propto \left\{ \begin{array}{l} a\,M\,\varepsilon\,t \\ a\,\varepsilon\,\sqrt{\frac{M\,t}{B\,\Delta E}} \end{array} \right. \ \mbox{without background} \\ \mbox{background-dominated} \end{array} \right.$

Note: factor 2 in particle physics is combined factor of 16 in $M \times t \times B \times \Delta E$

Standard Interpretation

Neutrinoless Double Beta Decay is mediated by light and massive Majorana neutrinos (the ones which oscillate) and all other mechanisms potentially leading to $0\nu\beta\beta$ give negligible or no contribution

The usual plot

Plot against other observables

Complementarity of $|m_{ee}| = U_{ei}^2 m_i$ and $m_\beta = \sqrt{|U_{ei}|^2 m_i^2}$ and $\Sigma = \sum m_i$

Plot against other observables

Complementarity of $|m_{ee}| = U_{ei}^2 m_i$ and $m_\beta = \sqrt{|U_{ei}|^2 m_i^2}$ and $\Sigma = \sum m_i$

Neutrino Mass Matrix

		KATRIN		$0\nu\beta\beta$		cosmology	
		yes	no	yes	110	yes	110
K ATD IN	yes	_	-	QD + Majorana	QD + Dirac	QD	N-SC
KAIRIN	ΠO	-	-	N-SI	low IH or NH or Dirac	$m_{\nu} \lesssim 0.1 {\rm eV}$ or N-SC	NH
$0\nu\beta\beta$	yes	٠	٠	-	-	(IH or QD) + Majorana	N-SC or N-SI
	10	٠	٠	-	-	low IH or (QD + Dirac)	NH
cosmology	yes	٠	٠			-	-
	no	٠	٠	٠		-	-

$0\nu\beta\beta$ and U_{e3}

From life-time to particle physics: Nuclear Matrix Elements

From life-time to particle physics: Nuclear Matrix Elements

Dueck, W.R., Zuber, PRD 83

Gomez-Cadenas *et al.*, 1109.5515

Vogel, 1208.1992

(current) uncertainty of factor 2 to 3, directly translates into uncertainty on particle physics parameter

Isotope	$T_{1/2}^{o\nu}$ [yrs]	Experiment	$ m_{ee} _{\min}$ [eV]	$ m_{ee} _{\max}$ [eV]	
48 Ca	5.8×10^{22}	CANDLES	3.55	9.91	$\times 0.98$
76 Ge	1.9×10^{25}	HDM	0.21	0.53	$\times 1.04$
	$1.6 imes 10^{25}$	IGEX	0.25	0.63	$\times 1.04$
⁸² Se	$3.2 imes 10^{23}$	NEMO-3	0.85	2.08	$\times 1.04$
⁹⁶ Zr	$9.2 imes 10^{21}$	NEMO-3	3.97	14.39	$\times 1.06$
^{100}Mo	$1.0 imes 10^{24}$	NEMO-3	0.31	0.79	$\times 1.06$
^{116}Cd	$1.7 imes 10^{23}$	SOLOTVINO	1.22	2.30	$\times 1.06$
130 Te	2.8×10^{24}	CUORICINO	0.27	0.57	$\times 1.09$
^{136}Xe	1.6×10^{25}	EXO-200	0.15	0.36	$\times 1.10$
^{150}Nd	1.8×10^{22}	NEMO-3	2.35	5.08	$\times 1.12$

(recent reevaluation of phase space factors by Iachello+Kotila)

HDM limit reached/improved by EXO-200 !

Experiment	Isotope	Mass of	Sensitivity	Status	Start of	Sensitivity
		Isotope [kg]	$T_{1/2}^{0 u}$ [yrs]		data-taking	$\langle m_{ u} angle$ [eV]
GERDA	⁷⁶ Ge	18	3×10^{25}	running	~ 2011	0.17-0.42
		40	2×10^{26}	in progress	~ 2012	0.06-0.16
		1000	6×10^{27}	R&D	~ 2015	0.012-0.030
CUORE	¹³⁰ Te	200	$6.5 \times 10^{26*}$	in progress	~ 2013	0.018-0.037
			$2.1 \times 10^{26**}$			0.03-0.066
MAJORANA	⁷⁶ Ge	30-60	$(1-2) \times 10^{26}$	in progress	~ 2013	0.06-0.16
		1000	6×10^{27}	R&D	~ 2015	0.012-0.030
EXO	¹³⁶ Xe	200 6.4×10^{25}		running	~ 2011	0.073-0.18
		1000	8×10^{26}	R&D	~ 2015	0.02-0.05
SuperNEMO	⁸² Se	100-200	$(1-2) \times 10^{26}$	R&D	\sim 2013-15	0.04-0.096
KamLAND-Zen	¹³⁶ Xe	400	4×10^{26}	running	~ 2011	0.03-0.07
		1000	10^{27}	R&D	\sim 2013-15	0.02-0.046
SNO+	¹⁵⁰ Nd	132	1.8×10^{25}	in progress	~ 2014	0.09-0.18
	(with si	ame lifetime	$: {}^{150}$ Nd and 100	⁾ Mo do bes	t)	

With $0\nu\beta\beta$ one can

- test Majorana nature of neutrinos
- probe neutrino mass scale
- test inverted ordering
- extract Majorana phase
- test flavor symmetry models: neutrino mass "sum-rules"

Inverted Ordering

Nature provides 2 scales:

 $\langle m_{\nu} \rangle_{\max}^{\text{IH}} \simeq c_{13}^2 \sqrt{\Delta m_{A}^2} \quad \text{and} \quad \langle m_{\nu} \rangle_{\min}^{\text{IH}} \simeq c_{13}^2 \sqrt{\Delta m_{A}^2} \, \cos 2\theta_{12}$ requires $\mathcal{O}(10^{26} \dots 10^{27}) \text{ yrs}$ Ruling out Inverted Hierarchy

 $|m_{ee}|_{\min}^{\text{IH}} = (1 - |U_{e3}|^2) \sqrt{|\Delta m_{A}^2|} (1 - 2\sin^2\theta_{12}) = \begin{cases} (0.016...0.020) \text{ eV} & 1\sigma \\ (0.013...0.024) \text{ eV} & 3\sigma \end{cases}$

- small $|U_{e3}|$
- large $|\Delta m_{\rm A}^2|$
- small $\sin^2 \theta_{12}$

Current 3σ range of $\sin^2 \theta_{12}$ gives factor of 2 uncertainty for $|m_{ee}|_{\min}^{\text{IH}}$ \Rightarrow combined factor of 16 in $M \times t \times B \times \Delta E$ \Rightarrow need precision determination of θ_{12} Dueck, W.R., Zuber, PRD 83

Sterile Neutrinos and $0\nu\beta\beta$

• recall: $|m_{ee}|_{\rm NH}^{\rm act}$ can vanish and $|m_{ee}|_{\rm IH}^{\rm act} \sim 0.02$ eV cannot vanish

•
$$|m_{ee}| = |\underbrace{|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}^2| m_3 e^{2i\beta}}_{m_{ee}^{act}} + \underbrace{|U_{e4}|^2 m_4 e^{2i\Phi_1}}_{m_{ee}^{st}}$$

- $\Delta m^2_{
 m st}\simeq 1.8~{
 m eV}^2$ and $|U_{e4}|\simeq 0.13~(\leftrightarrow$ talk by Giunti)
- sterile contribution to $0\nu\beta\beta$ (assuming 1+3):

$$|m_{ee}|^{\rm st} \simeq \sqrt{\Delta m_{\rm st}^2} |U_{e4}|^2 \simeq 0.03 \text{ eV} \begin{cases} \gg |m_{ee}|_{\rm NH}^{\rm act} \\ \simeq |m_{ee}|_{\rm IH}^{\rm act} \end{cases}$$

• \Rightarrow $|m_{ee}|_{\rm NH}$ cannot vanish and $|m_{ee}|_{\rm IH}$ can vanish!

usual phenomenology gets completely turned around!

Usual plot gets completely turned around!

3 active neutrinos can be normally or inversely ordered

Sterile Neutrinos, Seesaw and $0\nu\beta\beta$

• if the eV-steriles are from seesaw: individual cancellations in flavor symmetry models, e.g.:

$$U_{e2}^2 m_2 + U_{e4}^2 m_4 = 0$$

• if seesaw scale is below 100 MeV: No double beta decay!

$$\sum_{i=1}^{6} U_{ei}^2 m_i = 0 \text{ since } \mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} = U \begin{pmatrix} m_{\nu}^{\text{diag}} & 0 \\ 0 & M_R^{\text{diag}} \end{pmatrix} U^T$$

Barry, W.R., Zhang, JCAP 1201

Non-Standard Interpretations:

There is at least one other mechanism leading to Neutrinoless Double Beta Decay and its contribution is at least of the same order as the light neutrino exchange mechanism

Clear experimental signature:

KATRIN and/or cosmology see nothing but $0\nu\beta\beta$ does

Schechter-Valle theorem: no matter what process, neutrinos are Majorana:

is 4 loop diagram: $m_{\nu} \sim \frac{1}{(16\pi^2)^4} \frac{\text{MeV}^5}{m_W^4} \lesssim 10^{-23} \,\text{eV}$

explicit calculation: Duerr, Lindner, Merle, 1105.0901

note: often there are 1-loop diagrams leading to m_{ν} : direct vs. indirect contribution (Choubey, Duerr,

Mitra, W.R., 1201.3031)

mechanism	physics parameter	current limit	test
light neutrino exchange	$\left \mathbf{U_{ei}^2 m_i} \right $	0.4 eV	oscillations, cosmology, neutrino mass
heavy neutrino exchange	$\left \frac{S_{ei}^2}{M_i} \right $	$2 imes 10^{-8}~{ m GeV}^{-1}$	LFV, collider
heavy neutrino and RHC	$\frac{\mathrm{V_{ei}^2}}{\mathrm{M_i M_W^4}}$	$4 imes 10^{-16}$ GeV $^{-5}$	flavor, collider
Higgs triplet and RHC	$\frac{(\mathbf{M_R})_{ee}}{\mathbf{m_{\Delta_R}^2 M_{W_R}^4}}$	$10^{-15}~{ m GeV}^{-5}$	flavor, collider e^- distributio
λ -mechanism with RHC	$\left { { { { U_{{\mathbf{e}i}} {{{\mathbf{\tilde S}}_{{\mathbf{e}i}}}} } } \over {{{\mathbf{M}}_{{\mathbf{W}}_{{\mathbf{R}}}}^2}} } } ight $	$1.4 imes 10^{-10}~{ m GeV}^{-2}$	flavor, collider, e^{-} distributio
η -mechanism with RHC	$ an \zeta \left \mathbf{U_{ei} \tilde{S}_{ei}} \right $	$6 imes \mathbf{10^{-9}}$	flavor, collider, e^{-} distributio
short-range R	$ \begin{split} \frac{\begin{vmatrix} \lambda_{111}^{\prime 2} \\ \Lambda_{\rm SUSY}^{5} \end{vmatrix}}{\Lambda_{\rm SUSY}^{5}} & \mathbf{f}(\mathbf{m}_{\mathbf{\tilde{g}}}, \mathbf{m}_{\mathbf{\tilde{u}}_{L}}, \mathbf{m}_{\mathbf{\tilde{d}}_{R}}, \mathbf{m}_{\chi_{\mathbf{i}}}) \end{split} $	$7 imes 10^{-18}~{ m GeV}^{-5}$	collider, flavor
long-range 🥂	$\sin 2\theta^{\mathbf{b}} \lambda_{131}^{\prime} \lambda_{113}^{\prime} \left(\frac{1}{\mathbf{m}_{\tilde{\mathbf{b}}_{1}}^{2}} - \frac{1}{\mathbf{m}_{\tilde{\mathbf{b}}_{2}}^{2}} \right)$	$2\times 10^{-13}~{\rm GeV}^{-2}$	flavor,
	$\sim rac{\mathbf{G_F}}{\mathbf{q}}\mathbf{m_b} rac{ \lambda_{131}'\lambda_{113} }{\mathbf{\Lambda_{SUSY}^3}}$	$1 imes 10^{-14}~{ m GeV}^{-3}$	collider
Majorons	$ \langle {f g}_\chi angle $ or $ \langle {f g}_\chi angle ^{f 2}$	$10^{-4} \dots 1$	spectrum, cosmology

Distinguishing Mechanisms

The inverse problem of $\mathbf{0}\nu\beta\beta$

- 1.) Other observables (LHC, LFV, KATRIN, cosmology,...)
- 2.) Decay products (individual e^- energies, angular correlations, spectrum,...)
- 3.) Nuclear physics (multi-isotope, 0ν ECEC, $0\nu\beta^+\beta^+,...$)

1.) Distinguishing via other Observables

standard mechanism: KATRIN, cosmology

Energy Scale:

Note: *standard amplitude* for light Majorana neutrino exchange:

$$\mathcal{A}_{\rm l} \simeq G_F^2 \, \frac{|m_{ee}|}{q^2} \simeq 7 \times 10^{-18} \left(\frac{|m_{ee}|}{0.5 \text{ eV}}\right) \, {\rm GeV^{-5}} \simeq 2.7 \, {\rm TeV^{-5}}$$

if new heavy particles are exchanged:

$$\mathcal{A}_{\rm h} \simeq \frac{c}{M^5}$$

 \Rightarrow for $0\nu\beta\beta$ holds:

$$1 \text{ eV} = 1 \text{ TeV}$$

 \Rightarrow Phenomenology in colliders, LFV

Examples

- *R*-parity violating supersymmetry (Allanach, Paes, Kom)
- TeV seesaw neutrinos (Ibarra, Petcov *et al.*; Mitra, Senjanovic, Vissani)
- Left-right symmetric theories (Senjanovic *et al.*; Goswami *et al.*)
- Color seesaw (Choubey, Duerr, Mitra, W.R.)

... focus only on one example here...

Interplay of diagrams in left-right symmetry

Interference of diagrams, constraints from LFV, neutrino data,...

Barry, W.R., to appear; see also Goswami et al., 1204.2527

2.) Distinguishing via decay products

Defining asymmetries

 $A_{\theta} = (N_{+} - N_{-})/(N_{+} + N_{-})$ and $A_{E} = (N_{>} - N_{<})/(N_{>} + N_{<})$

SuperNEMO: Arnold et al., 1005.1241

3.) Distinguishing via nuclear physics

Gehman, Elliott, hep-ph/0701099

3 to 4 isotopes necessary to disentangle mechanism

Cleanest Probe: $e^- e^-$ collisions: "inverse $0\nu\beta\beta$ "

• LR-symmetry: (Barry, Dorame, W.R., 1204.3365)

 $e^-e^- \rightarrow W_L^- W_R^-$, $\mathbf{s} = \mathbf{9} \ \mathrm{TeV}^2$

 $\log_{10}(\sigma/fb)$

• SUSY: (Kom, W.R., 1110.3220)

44

Summary

2.) Distinguishing via decay products

SuperNEMO

• source foils in between plastic scintillators

• individual electron energy, and their relative angle!

EXO-200 vs. Klapdor

$$T_{\rm Ge}^{-1} = G_{\rm Ge} \left| \mathcal{M}_{\rm Ge} \right|^2 \left| m_{ee} \right|^2 = \left(2 \times 10^{25} \, {\rm yrs} \right)^{-1}$$
$$T_{\rm Xe}^{-1} = G_{\rm Xe} \left| \mathcal{M}_{\rm Xe} \right|^2 \left| m_{ee} \right|^2 \le \left(1.6 \times 10^{25} \, {\rm yrs} \right)^{-1}$$

Ge-claim is ruled out when

$$T_{\rm Xe} \ge 2.9 \times 10^{24} \left| \frac{\mathcal{M}_{\rm Ge}}{\mathcal{M}_{\rm Xe}} \right|^2 \, {\rm yrs}$$

With compilation from Vogel, 1208.1992:

$$\left|\frac{\mathcal{M}_{\text{Ge}}}{\mathcal{M}_{\text{Xe}}}\right|^{2} \simeq \begin{cases} 4.0 \quad (\text{RQRPA}) \quad \Rightarrow T_{\text{Xe}} \geq 1.2 \times 10^{25} \,\text{yrs} \\ 4.2 \quad (\text{NSM}) \quad \Rightarrow T_{\text{Xe}} \geq 1.2 \times 10^{25} \,\text{yrs} \\ 2.5 \quad (\text{IBM-2}) \quad \Rightarrow T_{\text{Xe}} \geq 7.3 \times 10^{24} \,\text{yrs} \\ 1.2 \quad (\text{EDF}) \quad \Rightarrow T_{\text{Xe}} \geq 3.5 \times 10^{24} \,\text{yrs} \end{cases}$$

Simple and interesting scenario $m_{\nu} = M_L - m_D M_R^{-1} m_D^T = v_L h - m_D (v_R f)^{-1} m_D^T$ suppose M_L dominates in m_{ν} and h = f: $\Rightarrow M_R \propto m_{\nu}$ Triplet can mediate $\mu \rightarrow 3e$ at tree-level: $m_{\Delta} \gg M_i$

$$\Rightarrow \mathcal{A}_{N_R} \simeq G_F^2 \left(\frac{m_W}{M_{W_R}}\right)^4 \sum \frac{V_{ei}^2}{M_i} \propto \sum \frac{U_{ei}^2}{m_i}$$

to better estimate error range: correlations need to be understood:

Faessler, Fogli *et al.*, PRD **79** ellipse major axis: SRC (blue, red) and g_A ellipse minor axis: g_{pp}

Flavor Symmetry Models

suppose your model predicts TBM:

$$(m_{\nu})_{\mathrm{TBM}} = \left(egin{array}{ccc} x & y & y \ \cdot & z+x & y-z \ \cdot & \cdot & z+x \end{array}
ight)$$

$$m_1=x-y\;,\;\;m_2=x+2y\;,\;\;m_3=x-y+2z$$
 if $z=y+x/2$, then:

$$m_1 = x - y$$
, $m_2 = x + 2y$, $m_3 = 2x + y$

and one has a neutrino mass sum-rule

$$m_1 + m_2 = m_3$$

The Zoo (of A_4 models)

		0-	-		
Type	L_i	ℓ_i^c	$ u_i^c $	Δ	References
A1				-	$[1{-}14]$ $[15]^{\#}$
A2	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$	[16-18]
A3				$\underline{1}, \underline{3}$	[19]
B1	3	1 1/ 1//	3	-	[4, 20-27] [#] $[28-30]$ [*] $[31-45]$
B2	<u> </u>	1,1,1	<u>0</u>	$\underline{1}, \underline{3}$	$[46]^{\#}$
C1				-	[2, 47, 48]
C2	3	3	_	<u>1</u>	$[49, 50] [51]^{\#}$
C3	5	<u>5</u>		$\underline{1}, \underline{3}$	[52]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[53]
D1				-	$[54, 55]^{\#}$ $[56, 57]^{*}$ $[58]$
D2	3	3	3	<u>1</u>	$[59]$ $[60]^*$
D3	5	<u>0</u>	<u>0</u>	$\underline{1}'$	$[61]^*$
D4				$\underline{1}', \underline{3}$	$[62]^*$
Е	<u>3</u>	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	[63, 64]
F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[65]
G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1}, \underline{1}', \underline{1}''$	-	[66]
Н	<u>3</u>	<u>1, 1, 1</u>	-	-	[67]
Ι	<u>3</u>	<u>1, 1, 1</u>	$\underline{1}, \underline{1}, \underline{1}$	-	[68]*
J	<u>3</u>	<u>1, 1, 1</u>	<u>3</u>	-	[12, 39, 69, 70]
Κ	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	$\underline{1}, \underline{1}$	1	[71]*
L	<u>3</u>	<u>1, 1, 1</u>	1	-	[72]*
М	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}$	-	[73, 74]
Ν	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	-	[75]

Barry, W.R., PRD 81, updated regularly on http://www.mpi-hd.mpg.de/personalhomes/jamesb/Table_A4.pdf

Sum-rules in Models and $0\nu\beta\beta$

	Sum-rule	Flavour symmetry	
1	$2m_2 + m_3 = m_1$	$A_4, T', (S_4)$	
$2m_2$ m_3	$m_1 + m_2 = m_3$	$S_4,(A_4)$	
m _	$\frac{2}{m_2} + \frac{1}{m_3} = \frac{1}{m_1}$	A_4, T'	
mu	$\frac{1}{m_1} + \frac{1}{m_2} = \frac{1}{m_3}$	S_4	

constrains masses and Majorana phases

Barry, W.R., NPB 842

 $m_1 + m_2 - m_3 = \epsilon m_{\max}$

stable: new solutions not before $\epsilon\simeq 0.2$