

The XMASS 800kg Experiment

Jing LIU Kavli IPMU, Univ. of Tokyo NPB2012, Shenzhen

XMASS collaboration:

Kamioka Observatory, ICRR, Univ. of Tokyo:

K. Abe, K. Hieda, K. Hiraide, Y. Kishimoto, K. Kobayashi, Y. Koshio, S. Moriyama, M. Nakahata, H. Ogawa, H. Sekiya, A. Shinozaki, Y. Suzuki, O. Takachio, A. Takeda, D. Umemoto, M. Yamashita, B. Yang

IPMU, University of Tokyo: K. Martens, J.Liu

Kobe University: Hosokawa, K. Miuchi, A. Murata, Y. Ohnishi, Y. Takeuchi Tokai University: Kusaba, K. Nishijima

Gifu University: S. Tasaka

Yokohama National University: S. Nakamura, I. Murayama, K. Fujii Miyagi University of Education: Y. Fukuda STEL, Nagoya University: Y. Itow, K. Masuda, H. Uchida, H. Takiya Sejong University: Y.D. Kim

Seoul National University: S. B. Kim KRISS: Y.H. Kim, M.K. Lee, K. B. Lee, J.S. Lee

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

~100 kg LXe prototype

~800 kg LXe direct dark matter search multi ton scale Multi-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

~100 kg LXe prototype

~800 kg LXe direct dark matter search multi ton scale Multi-purpose

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

Xenon MASSive detector for Solar neutrino (pp/⁷Be) Xenon neutrino MASS detector (double beta decay) Xenon detector for weakly interacting MASSive Particles

LXe (Liquid Xenon) surrounded by PMTs (Photomultiplier Tubes) recording scintillation lights generated by nuclear or electronic recoils in LXe

Detector

12

Structure of XMASS 800kg detector

Structure of XMASS 800kg detector

Reconstruct interaction point from PMT hit pattern

Colored photo cathodes indicating number of p.e. (photoelectrons) recorded by PMTs

Interaction point (vertex) can be reconstructed from the PMT hit pattern.

LXe self-shielding

Where is it?

Kamioka underground observatory

1000 m rock overburden (2700 m water equiv.): Muon: 6.0x10⁻⁸ /cm⁻²/s/sr Neutron: 1.2x10⁻⁶/cm⁻²/s

360m above the sea

Horizontal access: 15 minutes drive from office, too easy to get in! No excuse to avoid 24-hour shift ☺

PMT mounting finished, Feb. 2010

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

Water filling, Sep. 2010

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo

Scintillation light yield :: calibration system

Scintillation light yield: 14.7 \pm 1.2 p.e./keV (⁵⁷Co at center)

~ 2 p.e./keV in XENON100

Position & energy resolution (122keV γ from ⁵⁷Co)

Background

12

Ambient γ and n: pure water tank, \emptyset ~10 meter

Pure water tank (large enough for multi ton LXe) equipped with 20 inch PMTs on the wall as

- active muon veto and
- passive ambient γ and n shielding

 $\gamma \ll \gamma$ from PMT, n<<10⁻⁴/d/kg

PMT radiation: Ultra low background PMTs

PMT & PMT holder radiation: LXe self-shielding

	BG/PMT [mBq]
U chain	0.70 ± 0.28
Th chain	1.51 ± 0.31
⁴⁰ K	< 5.10
⁶⁰ Co	2.92 ± 0.16

fiducial volume: r<20cm, 100 kg LXe

⁸⁵Kr (Q_{β} =687keV) : distillation

K. Abe *et al*. for XMASS collab., Astropart. Phys. 31 (2009) 290

²²²Rn

 ^{214}Po decays with 164 μs half life.

It can be identified by time coincidence between two consecutive events:

²²Rr

²¹⁸ At

EXO200: 4.5 μBq/kg

²²⁰Rn

Cherenkov light from PMT window

Electrons from ⁴⁰K in a PMT photo cathode create Cherenkov lights in PMT window --- a major background at low energy

head-to-total ratio =

(# of hits in 1st 20ns window) / (total # of hits)

is used to reject Cherenkov events

Cherenkov cut and efficiency

Measured Spectrum after cleanup

Unexpected background

12

Taking data when lowering down the liquid xenon level

Particle identification

Hint from a low background workshop in SNOLAB

Re-measurement of aluminum activity

Old germanium result: consistent with 0

New germanium result (pay special attention to U238 upper stream contamination):

background Al sample

AI MC simulation

A background candidate below 5 keVee

MC: GORE-TEX entries/day/keV/kg Gore-tex Modern C: 7.5% between PMT and holder LXe absorbed inside preventing light leak 0.3mm photon att. $0 \sim 6 \pm 3\%$ of modern carbon Transparency unknown 14 16 18 entries/day/keV/kg MC: GORE-TEX Modern C: 7.5% LXe absorbed inside **14C in GORE-TEX** 0.1mm photon att. entries/day/keV/kg m_{DM} = 30GeV 5730 y $+ \cdot T = 1$ $\sigma_{s_1} = 1.4 \times 10^{-41} \text{ cm}^2$ $^{14}_{6}$ Q_B=156.475 9.0 1+: T=0 • stable 100% 2 12 18 20scaled energy[keV]

A full list of background

Material	Measured RI and activity			Methods of the measurements
PMTs	238U:	0.704 ± 0.282	2 mBq	HPGe detector measurement for each
(per PMT)	232Th:	1.51 ± 0.31	mBq	parts and whole PMT
	60Co:	2.92 ± 0.16	mBq	
	40K:	9.10 ± 2.15	mBq	
PMT aluminum	238U-230Th:	1.5 ± 0.4	Bq	HPGe detector measurement.
(210g)	210Pb:	5.6 ± 2.3	Bq	
	232Th:	96 ± 18	mBq	
	235U:	~67	mBq	\rightarrow By calculation
Detector				Alpha candidates using FADC data
surface	210Pb:	~40	mBq	Surface: PMT window 59%, PMT AI 7.0% PMT rim 7.0%, GORETEX 3.7%, Cu 23.3% (surface 7.8%, wall 14.2%, bottom 1.3%)
GORE-TEX for	14C:	0.4 ± 0.2	Bq	14C: modern carbon measurement.
PMTs	(6 \pm 3% of modern carbon)			210Pb: Ge measurement.
(120g)	210Pb:	26.5 ± 11.9	mBq	
Internal RI in	85Kr:	<2.7	ppt	85Kr : API-MS measurement
xenon	214Pb:	8.2	mBq	214Pb : ~222Rn concentration in detector

A comparison to other experiments

Physics

12

Make full use of large target mass and high light yield

Advantages of current detector:

- 1. Largest target mass w/o fiducialization
- 2. High light yield -> low energy threshold

Disadvantages:

- 1. High background
- 2. Lack of bg rejection methods except fiducialization

Energy spectra after each cut

Data selection:

XMASS 800kg

 \succ Triggered by the inner detector only (no water tank trigger)

- Time difference to the previous/next event >10ms
- \succ RMS of hit timing <100ns (rejection of after pulses of PMTs) Cherenkov cut

Jing LIU @ NPB 2012

40

Uncertainties

- Major uncertainty is the scintillation efficiency of nuclear recoil in liquid xenon
- Uncertainties of the trigger threshold, cut efficiencies and energy scale are much smaller, but also properly taken into account

Spectrum and Sensitivity

Annual modulation analysis

Check DAMA modulation signal:

- QF(Na)~0.25, Leff(Xe)~0.15 →
 2~6keVee(Na) → 8~24 keV_{NR} →
 1~4keVee(Xe)
- Recoil shape, $A^2 \rightarrow 1/30$ sensitivity

Energy range: 1-4 keVee

Axion-like dark matter search

Non-relativistic axion like dark pseudo scalars being explanation of DAMA annual modulation [*R. Bernabei et al., Int. J. Mod. Phys. A 21, 1445 (2006)*]

signal + background MC to the observed spectrum

Limit on the axio-electric coupling

Solar axion search

Produced through gaee, detected through gaee

Produced through $ga\gamma\gamma$, gaN, detected by gaee

Future

12

Refurbishment

Jing LIU @ NPB 2012

Spin independent sensitivity after refurbishment

51

XMASS phase 1.5

- Half step to XMASS phase 2
 - Hence named 1.5
- Total mass 5 tons
 - Fiducial mass 1 ton
- Background
 - New PMTs
 - No Gore-tex
 - Less surface ²¹⁰Pb
 - Expect 10⁻⁵ dru
- Sensitivity
 - $s_{SI} < 10^{-46} \text{ cm}^2 (> 5 \text{ keVee})$
 - a few x 10⁻⁴² cm² (>0.3 keVee)

Schedule

Summary

- Detector
 - was constructed and started commissioning late 2010
 - high light yield, low threshold
 - large target mass
- Background
 - not as low as originally expected
 - but composition is well understood above 5keV
- Physics
 - preliminary results on light dark matter
 - and axion-like particle searches
- Future
 - improving reconstruction/BG reduction
 - refurbishing hardware
 - aiming at the original sensitivity
 - XMASS1.5 is planed to run in 2015