

STATUS OF THE CUORE0 AND CUORE EXPERIMENTS

O.Cremonesi

INFN – Sez. Milano Bicocca

STATUS OF THE CUORE0 AND CUORE EXPERIMENTS

O.Cremonesi

INFN – Sez. Milano Bicocca

Outine:

- Scientific goal
- Experimental setup
- Status
- CUORE-0
- Conclusions

CUORE

2 Civitarese et al., JoP:Conference series 173 (2009) 012012 3 Menéndez et al., NPA 818 (2009) 139 4 Barea and Iachello, PRC 79 (2009) 044301

Dark Matter search potential \rightarrow F.Bellini talk

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

Mechanical decoupling system

Underground laboratory (LNGS)

Detector calibration system

The CUORE Collaboration

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

TeO2 bolometers evolution

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

- **Calibration system**
- Electronics

ββ0v experimental sensitivity

ββ candidate: ¹³⁰Te – Q 2527.5 keV Source Mass: 206 kg ¹³⁰Te – N_{ββ} 9.6 x10²⁶ Projected Bkg: 0.01 c/keV/kg/y Resolution: ~ 5 keV @ROI Sensitivity T_{1/2}^{0v}: 1.6x10²⁶ y in 5 y

Sensitivity $\langle m_{ee} \rangle \langle 40 \div 94 \text{ meV} \text{ in 5y (IH)}$

- Deep underground location
- Bolometric approach
- Large mass array
- Material selection
- Severe control of procedures
- Stable operating condition over several years

The LNGS underground facility

CUORE hut (New Building)

Cuoricino/CUORE-0 hut O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

• Average depth ~ 3650 m.w.e.

Factor 10⁶ reduction in muon flux to
 ~ 3×10⁻⁻⁸ μ/(s·cm²)

The CUORE TeO₂ bolometers

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

Background contributions

Largest available statistics: Cuoricino

But a lot of information comes also from dedicated R&D bolometric measurements in an R&D cryogenic setup @ LNGS

R&D and QC tests

TTT (Three Tower [cleaning] Test)
RAD (RADioactivity study setup)
CCVR (CUORE crystal validation runs)
No way of measuring directly the background level in the ββ0v ROI
Background model needed

Background model

MC: the background in CUORICINO is due to degraded alpha particles which release only part of their energy in the detector (surface contamination)

Background budget

Source	CUORE in the ROI c/(keV kg y)	Source of data	
Cosmogenic activation of crystals (bulk)	~ 1 10 ⁻³	NAA + MC	
Gold wires (232Th and 238U) (bulk)	< 1 10 ⁻³	Bolometric test + HPGe	
Copper frames (232Th) (bulk)	< 1.5 10 ⁻³	HPGe + NAA + MC	
²³² Th in the Roman lead shield (bulk)	< 4 10 ⁻³	Bolometric + HPGe	
Muon interactions (bulk)	~ 1.8 10 ⁻³	Measured fluxes + MC	
TeO ₂ crystals surface activity	< 4 10 ⁻³	Bolometric tests (CCVR) + MC	
Surface activity of the mounting structure	< 2-3 10 ⁻²	Test on small tower + MC	
	< 6 10 ⁻²	Test on small tower + MC	
If contamination in the R&D run surface contamination of copper	are due to If contamination of structure	ation in the R&D run are due to ²¹⁰ Pb tamination of PTFE (unlikely)	
mutually exclusive hypotheses! new measurement in progress			

F.Alessandria et al. [CUORE coll.] <u>http://arxiv.org/abs/1109.0494v1</u>
C.Arnaboldi et al. Phys. Rev. C 78 (2008) 035502
F.Bellini et al. Astr.Phys. 33 (2010) 169
F.Alessandria et al. [CUORE coll.] <u>http://arxiv.org/abs/1108.4757v1</u>

Background budget

Source	CUORE in the ROI c/(keV kg y)	Source of data
Cosmogenic activation of crystals (bulk)	~ 1 10 ⁻³	NAA + MC
Gold wires (232Th and 238U) (bulk)	< 1 10 ⁻³	Bolometric test + HPGe
Copper frames (²³² Th) (bulk)	< 1.5 10 ⁻³	HPGe + NAA + MC
²³² Th in the Roman lead shield (bulk)	< 4 10 ⁻³	Bolometric + HPGe
Muon interactions (bulk)	~ 1.8 10 ⁻³	Measured fluxes + MC
TeO ₂ crystals surface activity	< 4 10 ⁻³	Bolometric tests (CCVR) + MC
Surface activity of the mounting structure	< 2-3 10 ⁻²	Test on small tower + MC
	< 6 10-2	Test on small tower + MC
	< 6 10 ⁻²	Test on small tower + MC

Conservative values

 Different depth profiles of surface contaminations compared and largest values quoted here

Upper limits

• Attribute all events in the target region as due solely from a certain source

F.Alessandria et al. [CUORE coll.] <u>http://arxiv.org/abs/1109.0494v1</u> C.Arnaboldi et al. Phys. Rev. C 78 (2008) 035502 F.Bellini et al. Astr.Phys. 33 (2010) 169 F.Alessandria et al. [CUORE coll.] <u>http://arxiv.org/abs/1108.4757v1</u>

CUORE sensitivity

Background goal of 0.01 c/keV/kg/y

 $T_{1/2} = 1.6 \times 10^{26} \text{ y } m_{\beta\beta} = 41-95 \text{ meV}$

CUORE sensitivity

Background goal of 0.01 c/keV/kg/y

 $T_{1/2} = 1.6 \times 10^{26} \text{ y } m_{\beta\beta} = 41-95 \text{ meV}$

The large mass and excellent energy resolution, make CUORE competitive to sound the IH region down to 41-95 meV

CUORE experimental setup

Custom cryogenic system @ LNGS.

- Improved shielding and material selection.
- High efficiency in background rejection, due to the packed geometry: minimum lead thickness surrounding the detector ~ 36 cm
- No cryogenics liquids: better duty cycle
- Mechanical suspension of the detector assembly completely independent from the refrigeretor structure: better control of noise induced by vibrations
- Severe control of the radioactivity of the set-up

Embedded in the setup (after a severe control of the radioactivity of the materials):

- Cryo-free dilution refrigerator (Leiden Cryogenics)
- Roman Lead (no 210Pb) cold shield
- Detector and Pd shiled suspension
- Calibration system

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

Detector Calibration System

- 12 gamma source wires

 ²³²Th: thoriated tungsten wire
 ⁵⁶Co: proton activated Fe wire
- Minimize down time but rate at each crystal not exceeding 150 mHz
- Stringent heat load requirement

An improved tower design

- Copper Frame:
 - Heat bath
 - Background source
- Teflon holders
 - The weak thermal link
 - Reduce vibration noise

CUORE tower assembly line

CUORE status & schedule

Detector

- Crystals, almost completely delivered at LNGS
- Copper parts machining and cleaning are progressing regularly
- Tower assembly line was completed in 2011 and tested on CUORE0. Ready to start for the CUORE tower assembly in November 2012
- Radon abatement system installed

CUORE Hut, and most of all the infrastructures are ready

Cryogenics

- Dilution unit delivered to LNGS. Performance better than expected.
- 3 (of 6) cryostat vessels tested and delivered at LNGS
- Commissioning of the cryogenic setup started on July 2012

Crystals	12/12
Thermistors	13/03
Cleaned Cu parts	13/12
Cryogenics	13/12
Tower Assembly	14/04
Detector insertion	14/07
Cool Down	Fall 2014 17

Detector parts

Teflon and Copper parts almost completed:Copper cleaning underway

NTD's: 695 of 1250 already delivered

CUORE-0

Critical points in the way of CUORE experiment:

- uniformity of the detector array
- control of possible recontamination during the detector construction

CUORE-0:

- first tower from the CUORE assembly line
- operated as a stand alone experiment in the CUORICINO cryostat

CUORE-0 goals:

- full test and debug of the new CUORE assembly line
 - high statistics check of the improved uniformity of bolometric response
 - identify which operations are critical for the success of CUORE
 - reveal flaws and inefficiencies in the assembly procedures

- thorough exercise of the analysis framework

CUORE0 construction

Mechanical assembly

Sensors & heaters gluingsemi-automated system

Sense wire (ball) bonding

- 50 µm gold wire
- direct bonding on final detector

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

Crystal-Sensor coupling

Robotic gluing for

- Uniformly sized
- Repeatable
- Controllable glue spots (and coupling)

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzher

Mechanical assembly

Cabling

Wire bonding

Storage

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

CUORE0 installation

CUORE-0 assembly already gave us the opportunity to test and fix the procedures and the systems to realize the CUORE detector: a complete CUORE tower can be assembled in less than 4 weeks

Other innovative changes (e.g. sense wires) are also being tested

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

CUORE-0 status

Run 400883 - Channel 12

CUORE-0 is in the pre-operation phase

In August 2012 the detector reached base T of

All the active channels survived the cool-down

CUORE collaboration is not ready to release information on resolution and detector performances but these will come very soon

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

CUORE-0 status

Run 400883 - Channel 12

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

CUORE-0 status

Run 400883 - Channel 12

information on resolution and detector performances but these will come very soon

O.Cremonesi - 24/09/2012 NPB 2012 @ Shenzhen

CUORE0 sensitivity

F.Alessandria et al. [CUORE coll.] http://arxiv.org/abs/1109.0494v1

Background: 0.05-0.11 c/keV/kg/y range

If 0.05 c/(keV kg y), expected 2-year sensitivity is $T_{1/2} = 5.9 \times 10^{24} \text{ y} @ 90\%\text{CL}$ (CUORICINO: $T^{0v} > 2.8 \times 10^{24} \text{ y}$) $m_{\beta\beta} = 170-390 \text{ meV}$ Significance level at which CUORE-0 can observe a DBD signal consistent with the claim in ⁷⁶Ge (KK-HK), assuming 0.05 c/keV/kg/y background

• The inner band corresponds to the best-fit value of the claim; the range arises from the "1o" range of QRPA NME calculations in A. Faessler et al., Phys. Rev. D79 (2009) 053001 • The outer band also includes the 1 σ error on the ⁷⁶ Ge claim

The acceptance tests of the 2 vacuum tight chambers (300K and 4K) of the CUORE cryostat have started at the end of May 2012

- The test was comoleted mid July and the chambers delivered at LNGS by the end of July.
- Since then we are following a detailed plan of commissioning of the cryogenic system which will last for the another 1.5 years

4K vessel @ construction company (SIMIC)

Vacuum test @ SIMIC

4k insertion

Cooldown preparation

Superinsulation

Setup commissioning @ LNGS

Commissioning @ LNGS

4K vessel installation

operations under the 300K plate

Conclusions

- With ~200 kg of 130Te and a resolution of 5 KeV FWHM, CUORE has the potential to explore the inverted mass hierarchy of neutrino mixing
- CUORE-0 has demonstrated that the collaboration can face the challenge of assembling the ~1000 CUORE bolometers (~10 k pieces) in extremely clean conditions
- CUORE towers assembly will start in a couple of months.
- Cryogenics commissioning was finally started in July 2012. It will continue for the whole 2013.
- CUORE operation will start in 2014
- CUORE-0 prototype has been successfully installed (in the CUORICINO cryostat) and is presently in the pre-operation phase. It will start to collect data very soongive us answers very soon.

