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Topics Discussed

® Status of oscillations
® Recent Results
® Phenomenology, Theory
® Sterile neutrino situation

® Neutrino mass

® Tritium, cosmology, double beta decay
® Dark matter searches
® Natural sources

® Solar, geoneutrinos, cosmic rays

® Future

e Completing the oscillation picture (CP, mass hierarchy, 0,3)

® New facilities (accelerators and detectors)

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 2



Oscillations: 1998 and 2012

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 3



Oscillations: 1998 and 2012

_Svmmary_ Neutrino 1998
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Oscillations: 1998 and 2012

_Svmmary_ Neutrino 1998
Evidence for 7 oscillations
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03— Second Phase Change
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03— Second Phase Change

The large value of sinO3 will make it easier to look for CP
violation and provides hope for leptogenesis (Petcov)
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03— Second Phase Change

The large value of sinQ,3 will make it easier to look for CP
violation and provides hope for leptogenesis (Petcov)

Most of the experimental analyses to date have looked at
each sector pretty much independently

Atm. dom. Atm. subdom. Solar Majorana
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To complete our knowledge of this current neutrino Standard
Model we need to determine mass hierarchy, 0cp and 023 octant.
To achieve this, (global?) 3v analyses will be needed
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03— Second Phase Change

The large value of sinQ,3 will make it easier to look for CP
violation and provides hope for leptogenesis (Petcov)

Most of the experimental analyses to date have looked at
each sector pretty much independently
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To complete our knowledge of this current neutrino Standard
Model we need to determine mass hierarchy, 0cp and 023 octant.
To achieve this, (global?) 3v analyses will be needed

Known, large 0,3 allows us to define future program
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Global Analysis - Example from Lisi

LBL + Solar + KamLAND

+ SBL Reactors

+ SK Atm
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New Results on 03
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New Results on 03

Solar + KamLAND
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New Results on 03

Solar + KamLAND
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New Results on 03
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Atmospheric Sector
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Atmospheric Sector

Summary of different analyses
Good agreement
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Atmospheric Sector

Summary of different analyses
Good agreement

T —p——————T—r—r—————— 4 - a
3.9 —MINOS 10.71x 10% POT (v,) . NGUt”ﬂO RGSUlt
- - +336x 10 POT (v,) + 37.9 kton-years
Q) = Super-K zenith angle”
= 3 SuerkuE Am?2=2.41%011 40 X 103 eV?
™ 3 .
o sin%(20) = 0.94%004 4 o5
T 25F
. i
E 2. . .
| ~anse oerioem @012 - Antineutrino Result
" MINOS PRELIMINARY 90% C.L. | —, 098 3 5
15111 — +0. _
08 085 09 085 1 Am?=2.60"%.023 X 10~ eV
sin“(20 :
=)  sin2(20) > 097409,

Good agreement

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 7



Atmospheric Sector

Summary of different analyses
Good agreement
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Good agreement

V+r’s are produced in these oscillations;
OPERA finds expected no of events (2 so far)
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Sterile neutrinos
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Sterile neutrinos

v Sterile neutrinos have no SM interactions
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LSND and MiniBooNE

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 9



Beam Excess

LSND and MiniBooNE

LSND
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LSND and MiniBooNE

LSND MiniBooNE
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LSND and MiniBooNE

LSND MiniBooNE
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Disappearance Ve, Ve
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Disappearance Ve, Ve

Reactor rate ratios
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Disappearance Ve, Ve

Reactor rate ratios

Reactor Rates
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Disappearance Ve, Ve
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Several ideas for new very short baseline experiments
to explore this anomaly (eg Borexino,DAEOALUS...)
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Appearance/Disappearance Tension
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Appearance/Disappearance Tension

341 Global Fit
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Summary of Oscillations Status

v Impressive accuracy has been achieved in
determination of 5 parameters: 3 angles and

2 Am?’s
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Summary of Oscillations Status

v Impressive accuracy has been achieved in
determination of 5 parameters: 3 angles and
2 Am?’s

v Still need to measure the phase Ocp,
determine the mass hierarchy and determine

the 023 octant
v LSND anomaly remains unresolved
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Neutrino Masses

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 13



Methods
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Methods

Current limits for the neutrino mass g("'
Cosmology: Supernova:
+ LSS, CMB, ... * ToF measurement SN 1987A

* model dependent * status: m, < 5.7 eV (PDG 2006)
+ status: zm, < 04eV (03 -2.0eV) « future sensitivity: sub-eV ?
+ future sensitivity: 0.1 - 0.6 eV

neutrino mass
measurements

Ovpp-decay:
+ eff. Majorana mass
* model dependent (NME)

* cancellation ? (Majorana phase o)
» status: mg; = 0.32eV ? (K-K.)
* future sensitivity: 20 — 50 meV
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B - Decay

KATRIN - culmination of several decades of work
mainly at Troitsk and Karlsruhe
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B - Decay

KATRIN - culmination of several decades of work
mainly at Troitsk and Karlsruhe

only 2 -10-13 of all 3H
B-decays in last 1 eV

rel. Rate
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KATRIN - culmination of several decades of work

mainly at Troitsk and Karlsruhe
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- Deca

KATRIN - culmination of several decades of work
mainly at Troitsk and Karlsruhe
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Katrin Sensitivity, Future

KATRIN sensitivity (90% C.L.) ~200meV
systematical and statistical errors comparable (3 yrs)

Pretty much impossible to scale it up but some
improvement (~x2) might be possible
Data taking to start in 2015
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Katrin Sensitivity, Future

KATRIN sensitivity (90% C.L.) ~200meV
systematical and statistical errors comparable (3 yrs)

Pretty much impossible to scale it up but some
improvement (~x2) might be possible
Data taking to start in 2015

Other possible approaches being studied:
'8’Rhe - calorimetric method (cryogenic bolometer)
Eo=2.47 keV Ti2 =48.2 Gy
Project 8 - radio frequency spectroscopy of coherent
cyclotron radiation from decay electrons from tritium
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Double-Beta Decay - General

from Rodejohann
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Double-Beta Decay - General

Allowed only for Majorana neutrinos

Only about 10-12 isotopes suitable
Expected lifetimes ~102°-10%yrs '

. . 01! sin® 26,5 = 0.10 >‘
Desired properties: _ [r—— ;
. . . o [ E
High isotopic abundance 7 ™
Easy enrichment o <12
Large matrix element
0.0001 NP PRI v

Large phase space own 0w oo T
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Double-Beta Decay - General

Allowed only for Majorana neutrinos

Only about 10-12 isotopes suitable
Expected lifetimes ~102°-10%yrs '

o1l s*26,=010 )

Desired properties: , — '
High isotopic abundance i — i
Easy enrichment o ke
Large matrix element
Large Phase Space 0008?0001 0001 001 | 01 | -..'-'-‘-1

m [eV]

from Rodejohann

Dependence of mgg limit:

W/o background: mgg < const/(MT)!/2
With background: mgg < const(bAE/MT)!/4
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Double-Beta Decay - Experiments

Experiment Isotope

Mass of
Isotope [kg]

Sensitivity
I 72 lyrs]

Status

Start of
data-taking

Sensitivity
(my) [&V]

GERDA 6 Ge

18
40
1000

3 x 10%°
2 x 102
6 x 1027

running
in progress
R&D

~ 2011
~ 2012
~ 2015

0.17-0.42
0.06-0.16
0.012-0.030

CUORE 130-Te

200

6.5 x 10%¢*
2.1 x 1026+~

in progress

~ 2013

0.018-0.037
0.03-0.066

MAJORANA 6Ge

30-60
1000

(1-2) x 10%°

6 x 10?7

in progress
R&D

~ 2013
~ 2015

0.06-0.16
0.012-0.030

EXO 136y

200
1000

6.4 x 10*°
8 x 1026

running
R&D

~ 2011
~ 2015

0.073-0.18
0.02-0.05

SuperNEMO 525e

100-200

(1-2) x 10°°

R&D

~ 2013-15

0.04-0.096

KamLAND-Zen S5

400
1000

4 x 10%°
1027

running
R&D

~ 2011
~ 2013-15

0.03-0.07
0.02-0.046

SNO+ 150Ng

132

1.8 x 10?8

in progress

~ 2014

0.09-0.18

(with same lifetime: 1Nd and '"’Mo do best. . .)

from Rodejohann

Approaching interesting sensitivity; for the future main effort
on reducing backgrounds and increasing mass

EXO measurement contradicts the claim of observation
of the signal by Klapdor-Kleingrothaus et al.
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After freezeout the sole neutrino interaction is gravitational;
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Mass from Cosmology

After freezeout the sole neutrino interaction is gravitational;
hence potential bounds on the sum of neutrino masses

The cosmological constraints come from their influence on
the expansion of the universe and large structure formation

As a result a number of cosmological models and
predictions of cosmological observations are influenced by
the neutrino mass scale

The strongest constraint comes from the dark matter density

The current range of upper limits at the 20 level on the

sum of neutrino masses is;:2m; =047 - 0.71 eV
depending on the specific cosmological model

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 |19



Dark Matter Searches
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Backgrounds

In both doublef and direct search DM experiments the 3 most
important issues are: background, background and background
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Backgrounds

In both doublef and direct search DM experiments the 3 most
important issues are: background, background and background

Invariably unexpected sources of background are found. These can
be &, neutrons or B/Y from inside or outside the detector

Over the last several years lot of effort, most of it successful, has
been spent to reduce or eliminate these backgrounds

A powerful tool in fighting the background is measurement of
the signal in more than one way, eg:

bolometry (heat)
scintillation (light)
ionization (charge)

Pulse shape analysis and segmentation can also be powerful tools

Significant efforts in those direction going on (eg LUCIFER, Csl...)
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The PAMELA Experiment
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The PAMELA Experiment

TOF ($1) [ |ttt |

v Satellite-borne experiment to study
distribution of light (A<16) particles

v Taking data since 2006

v Capable of measuring charge, energy and mass (by dE/dx)

v Intriguing observation of rise in positron
fraction at higher energies

v Could be astrophysics or particle physics

v Antiproton spectrum shows no anomalous behavior

v It will be interesting to see the AMS results on
positron fluxes and their spectra
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fraction at higher energies
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Neutrinos and Other Fields
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Neutrinos and Other Fields

Neutrinos have a potential of making significant impact
on other fields:

Geophysics and geology
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Neutrinos have a potential of making significant impact
on other fields:

Geophysics and geology

Relative abundance of U, Th,and K : . seciprens
Ratio of radiogenic to primordial heat in the earth :
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Clues to planet formation “,| L Lo
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Neutrinos have a potential of making significant impact
on other fields:

Geophysics and geology T2 e
Relative abundance of U, Th,and K fi = oo
Ratio of radiogenic to primordial heat in the earth {- -
Clues to planet formation gl "R

“““““

Astrophysics and astronomy

Details about solar processes (CNO, pep neutrinos)
Ultra high energy (UHE) neutrinos
Supernova mechanism
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Neutrinos and Other Fields

Neutrinos have a potential of making significant impact
on other fields:
Geophysics and geology

Relative abundance of U, Th, and K T’ = s
Ratio of radiogenic to primordial heat in the earth {- -
Clues to planet formation il s

B Geo-neutrinos

Reactor antineutrinos

Astrophysics and astronomy

Details about solar processes (CNO, pep neutrinos)
Ultra high energy (UHE) neutrinos
Supernova mechanism

Cosmology

Impact on cosmological models of neutrino mass scale
Additional light particles (besides 3 active V’s) and their nature
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Future Plans, Possibilities

Will limit this discussion to the area of oscillations

The key questions to address are mass hierarchy, 023 octant,
and CP violation and improvement of accuracy on all
parameters
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Future Plans, Possibilities

Will limit this discussion to the area of oscillations

The key questions to address are mass hierarchy, 023 octant,
and CP violation and improvement of accuracy on all
parameters

The major projects that are under consideration with a goal
of addressing some or all of these issues are:
New beams: LBNE in US, Laguna (CERN to Finland) in
Europe,and T2K beam in Japan to ???

Use of several cyclotrons at different locations to provide
well defined antineutrino beams from Y decay (DAEOALUS)
A new large detector for reactor neutrinos with a baseline

of ~55-60 km in China
Large magnetized detector in India: INO
Large liquid argon detectors
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| ocation of Different Sites
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NuMI and LBNE in US
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LBNE Beam

Target hall with remote
handling in high-radiation
environment

Beam extraction and
transport from the Main

Focusing horns Injector to target
for secondary

particlgs
Beamline to Homestake !
(not to scale) i APEX OF L 1 BOIT OF
LEBNE 40 LENE 30 TARGET HALL MAX, HILL HEIGHT = 70 EXTRACTION
NEAR DETECTOR ABSORBER HALL COMPLEX W LBNE 5 - PRIMARY BEAM
SURFACE BULDING SURFACE BUILDING <l )

> SERVICE BUILDING
EXISTING ELEV, 7514

ROCK/SOIL ELEV, 6752

EXISTING
ELEV. 7562

Large underground decay pipe (4m x 200m for Homestake ; 2m x 675m
for NuMlI)
Homestake beamline: much better aquifer protection than the NuMl
beamline
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LBNE Sensitivities
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| BNE Sensitivities

Mass Hierarchy Slgpmcanco Vs Mass Hierarchy Slgplﬂcanco vs
Normal Hierarchy, sin“(20,,)=0.07 to 0.12 Normal Hierarchy, sin“(20,,)=0.07 to 0.12
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| BNE Sensitivities

Significance (o)
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Laguna, LBNOQO in brief

540kton
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| aguna, LBNO in brief

540kton

Beam

Fully exploit long baseline neutrino oscillation pattern

perform L/E analysis over large energy range
(1%t and 24 maxima)

Wide Band Beam (WBB)
E?rdmaz > () 5 QeV — Ir > 1000 km

Detector

Better signal efficiency and background rejection
with a comparable mass

20 kton fine sampling tracking device

and magnetized muon detector
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Laguna, LBNOQO in brief

Beam

Fully exploit long baseline neutrino oscillation pattern

o __ pa— 540kton perform L/E analysis over large energy range
> (1%t and 24 maxima)

Wide Band Beam (WBB)
E2rdmaz > () 5 GeV = 1r > 1000 km

Detector

Better signal efficiency and background rejection
with a comparable mass

20 kton fine sampling tracking device

and magnetized muon detector

Hope is for construction i n 2016-2021, physics in 2023
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Electron v’s in LBNO
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Electron v’s in LBNO

e- Ilke CC sample (+)

and resolution
included

15

10

%) o e AR 3
g 35 -_Vp. — V,,. — evv Sop = 180°

N (94evts) ! Integral 7.2e+02 E

& 30 (50% of pots) —

S :

2 25 Vy — Ve =

. (526evts) -

= 20 -

S Detector response
Al

P

2

c

©

ﬁ

0 2 3 - 5 6 7 8 9 10

7O NC R G
(29evts) %geWs) ve CC (levis) scov energy (GeV)

A Rubbia — LAGUNA-LBNO o 32

Stanley Woijcicki

International Symposium on Neutrino Physics and Beyond September 26,2012

31



| BNO Sensitivities

Mass hierarchy
comparisons
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Delta_Chi

| BNO Sensitivities

Sensitivity combining T2K(295km), NOvA(810km) and LBNO(2300km)
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| BNO Sensitivities

Sensitivity combining T2K(295km), NOvA(810km) and LBNO(2300km)

20 ~ 20 ¢ r » ,
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5% systemati LBNE [ \====" B
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Daya Bay ||

Exciting possibility of a new large detector ~60 km from the
reactor complex
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Potential to give a definitive determination of mass hierarchy
and significant improvement in the knowledge of 4 of the
oscillation parameters (<1%)
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Exciting possibility of a new large detector ~60 km from the

Potential to give a definitive determination of mass hierarchy
and significant improvement in the knowledge of 4 of the

Daya Bay ||

reactor complex

oscillation parameters (<1%)

Relies on interplay of solar and atmospheric oscillations
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Daya Bay ||

Exciting possibility of a new large detector ~60 km from the
reactor complex

Potential to give a definitive determination of mass hierarchy
and significant improvement in the knowledge of 4 of the
oscillation parameters (<1%)

Relies on interplay of solar and atmospheric oscillations
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# Adequate energy resolution
Understanding energy scale
Long attenuation length in
the scintillator

fonin (one design has sphere with
Is there adequate site!? diameter=34.5m)
Sufficient neutrino flux AdequaFe amount of light
Avoid “spurious” reactors to Suppression of backgrounds

wash out the effect
Sufficient overburden

Hope is to be ready for construction in 2016-2020
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INO Detector

A 50 kT magnetized iron detector to study neutrinos

To be located in southern India underground but can drive in
~7000 km from CERN and |JPARC
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INO Detector

A 50 kT magnetized iron detector to study neutrinos

To be located in southern India underground but can drive in

~7000 km from CERN and |JPARC
Some of the main physics goals are: g

Improved measurement of oscillation parameters
Determining the sign of Am?,; using matter effect

Measuring deviation from maximal mixing for 0,
Probing CP and CPT violation.
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INO Detector

A 50 kT magnetized iron detector to study neutrinos

To be located in southern India underground but can drive in

~7000 km from CERN and |JPARC
Some of the main physics goals are: m—p >
Improved measurement of oscillation parameters =
Determining the sign of Am?,; using matter effect

Measuring deviation from maximal mixing for 0,
Probing CP and CPT violation.

Atmospheric sector potential

1A m| (eV7)
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INO Detector

A 50 kT magnetized iron detector to study neutrinos

To be located in southern India underground but can drive in

~7000 km from CERN and |JPARC
Some of the main physics goals are: g

Improved measurement of oscillation parameters
Determining the sign of Am?,; using matter effect

Measuring deviation from maximal mixing for 0,
Probing CP and CPT violation.

Atmospheric sector potential

10

Mass hierarchy potential

[ | = 320,012 Normal hierarchy

—=- sin'20, =0.1

== s 20 =008

1A m| (eV7)
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INO Detector

A 50 kT magnetized iron detector to study neutrinos

To be located in southern India underground but can drive in
~7000 km from CERN and |JPARC

Some of the main physics goals are: i ———
* Improved measurement of oscillation parameters m:"’:_}fzr
+ Determining the sign of Am2,, using matter effect L YR

Measuring deviation from maximal mixing for 0,
* Probing CP and CPT violation.

Atmospheric sector potential

LOER AR R EEEORE RSy e Mass hierarchy potential

P | = sin 20, 20,12 Normal hierarchy
—- sin'20, =0.1

-= s IUI S0.08

1A my| (eV?)

: 6 8§ 10 12 14 16 18 20
Sin* 20, Yes

Site is available; commissioning hoped to start in 2017
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Neutrino Community

Number of authors on most recent publications
from the ongoing experiments - 2145

Duplication - +1.5 #?
Did not include in above SuperK, NOvA, SNO+,...

Need to add people working on new detectors,
new experiments and theorists

So my guesstimate is 2000-2500 for the whole
community

Comparable to ATLAS or CMS
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A Look Into the Future

Definitive determination that sinQ3 is large is a real
game changer in neutrino physics and opens up a
number of new opportunities
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a) Completion of oscillation picture with determination of mass
hierarchy and 023 octant and measurement of Ocp
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d) obtaining understanding of dark matter
e) significant advances in relevant cosmological observations
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A Look Into the Future

Definitive determination that sinQ3 is large is a real
game changer in neutrino physics and opens up a
number of new opportunities

Over the next decade we are hoping to see:

a) Completion of oscillation picture with determination of mass
hierarchy and 023 octant and measurement of Ocp
b) resolution of LSND and V. anomalies

c) exploration of the inverted mass hierarchy in double  decay
d) obtaining understanding of dark matter
e) significant advances in relevant cosmological observations

This may well be the golden decade in V physics
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Thank you

Many thanks to the conference organizers for their
warm and sincere hospitality and very efficient
organization of the conference
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Comparison of Different VWays
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m, ineV

Comparison of Different VWays
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Comparison of Different VWays

Ll 13 [ 2R BRI EEE R ) LR SRIEE R 1 LR ERIRR R R l
3 Bound from MAINZ and TROITSK |
1E &
- Sensitivity of KATRIN ] - ]
03F - 03 {
a | 2
o :
=) 4
1 5
8 1 E
003 mm = - - - - - ]
-E -1 A - . NN N E N e .
0.01 g _ i
y i : !
- Qg 1 b= 1 99% CL (1 dof)
0.m3 i gI'I(n("lHD b L A LA LLas 11 & 31111 0.037 TR T (A AhddaD
10-* 0.01 0.1 1 1073 001 0.1 1
lightest neutrino mass in ¢V lightest neutrino mass in ¢V
Kinematics of Decay Cosmology
Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 39



m, ineV

Comparison of Different VWays

l L3 [ 2R BRI EEE R ) LR SRIEE R 1 LERIRIRERRS l l -
3 Bound from MAINZ and TROITSK |
1E :
: ; ! ] 1
- Sensitivity of KATRIN ] 10
03+ i 03} .
A %
c N =
0.1 2 I = 102
g 1 E
1 |1 E 5
003 == == - - - - 0.1 b
-1 - - NN N E N e .
0.01 g i
ﬁ i 99% CL (1 dof) ]
- - 0
0.m3 399?6(;11(11990 Al A L aliar L1 st 1111 003 | s | T (/4 A A LA 10_4
10~ 0.01 0.1 1 103 001 0.1 1 10 10° 102 10! 1
lightest neutrino mass in ¢V lightest neutrino mass in ¢V lightest neutrino mass in eV
Kinematics of Decay Cosmology Double Beta Decay

Stanley Woijcicki International Symposium on Neutrino Physics and Beyond September 26,2012 39



Comparison of Different VWays

3" Bound from MAINZ and TROITSK
4
- Sensitivity of KATRIN
03+
o ] )
-E‘ 0.1 3 2
¢ g
L 8
003 w= - - - _ .
0.01 g
g i
o.m3 99?6 ng U.QHD b A LA LLas | I

lightest neutrino mass in ¢V

Kinematics of Decay

Moeme INEV

|
03
0.1 :
- - B WEN SEm BN W .
99% CL (1 dof)
0,031’ 1 L4 Ll 1 Lol i a1 i Laasnn
1073 001 0.1 1

lightest neutrino mass in eV

Cosmology

1

10"
-
9
g
3

A U
107
99% CL (1
10 NPT —
10 10° 107 10"

lightest neutrino mass in eV

Double Beta Decay

Obviously, we should all hope for inverted hierarchy
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The measured mass parameter is different for
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Obviously, we should all hope for inverted hierarchy

The measured mass parameter is different for

the three different classes of experiments
The goal is to reach a value which would either

exclude inverted hierarchy or obtain a measurement
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