

The PAMELA experiment for cosmic-ray measurements

Nicola Mori INFN Florence

on behalf of the PAMELA collaboration

International Symposium on Neutrino Physics and Beyond, Shenzhen, 25th September 2012

The PAMELA experiment

INFN

Resurs DK1 satellite

Satellite-borne experiment No atmospheric effects

Technical data

Mass ~ 470 kg Height ~ 1.3 m Power cons. ~ 355 W Downlink rate ~ 10 GB/day

Current status

> 6 years in orbit Data taking LT ~ 75% > 20 TB of raw data $> 2 \times 10^9$ triggers

Mission details Altitude: 360 - 600 km Orbit inclination: 70° Planned duration: 3 years Launch: 15th June 2006

The PAMELA collaboration

Russia

Naples

โกกต

Sweden

Florence

Trieste

Germany

TEKNISKA

HOGSKOLAN

Stockholm

Universität Gesamthochschule Siegen

Aimed at light particles (up to oxygen) Main focus on antiparticles

The magnetic spectrometer

Provides, among other informations, the **sign of charge**, which is crucial to identify antiparticles

The e.m. calorimeter

Topological shower information is used to discriminate hadrons from leptons. Direct measurement of energy for e^{\pm} .

- 22 Si-W-Si layers
- Si strip pitch: 2.4 mm
 - Very good sampling of lateral shower development
- Depth: 16.3 X₀
 - Good longitudinal containment for e^{\pm}
 - Energy measurement for e[±]
- Energy resolution for e[±]:
 - ~ 8% @ 10 GeV \rightarrow ~ 3% @ 100 GeV
 - Good containment required to exploit such performances

hadron (R=19GV)

electron (R=17GV)

· · · · · · · · · · · · · · · · · · ·

- Hadron/lepton rejection power ~ 10⁵
 - From simulations & test beam

The Time-of-Flight system

- 6 layers of plastic scintillators arranged in 3 XY planes
- It provides:
 - trigger
 - time-of-flight measurement
 - β
 - albedo rejection
 - ionization loss (dE/dx) measurement
- Resolution on time-of-flight
 measurement: 250 ps

Pamela

Protons, helium, antiprotons

Protons and helium

- Most abundant species
- Measure selection efficiencies using flight data
- · Corrections from simulation
 - Cross-check with flight data
- No ground calibrations are used

- Gradual softening in rigidity range 30 230 GV
 - $\varphi = A * R^{-\gamma \alpha \frac{R R_0}{R}}$
- Single power law (SPL) hypothesys is rejected at 95% c.l. (according to Fisher's and Student's *t* tests)
- Sudden hardening around 235 GV
- SPL hypothesys rejected at 95% c.l. for both protons and helium

- INFN
 - Ratio of fluxes: systematics partially cancels out
 - Solar modulation effects ~ negligible above 5 GV
 - First strong experimental evidence of different p and He spectral index

- p/He vs R is consistent with SPL above 5 GV, despite the many structures seen in single spectra
 - Consistent with SPL:

 $\Delta \gamma = \gamma_p - \gamma_{He} = 0.101 \pm 0.0014 \pm 0.0001$

p/He vs energy does not show such a regular behavior

Antiprotons

INFN

- Far less abundant than protons and electrons
 - p/p ~ 2x10⁻⁴ @ 10 GeV
- Strong calorimetr/spectrometer requirements to reduce contamination

Pa

- Selection efficiencies can be measured using proton sample from flight data
 - Less dependence on simulations
 - Reduced systematics

Electrons and positrons

ATELLITE ACMUSE

electron

ND

Electrons and positrons are identified by tracker and calorimeter:

SATELLITE (CPU) SIE

proton

- Tracker can identify particle's charge
- Calorimeter can identify leptons and hadrons

0.171 GV positron 0.169 GV electron

Most important contamination: protons

- Eg., spillover protons in e⁻sample:
 ~% @ 100 GV → 1000% @ 500 GV
- Reduced to a negligible amount using calorimeter

The tracker – segmented calorimeter combo is essential to obtain excellent lepton-hadron and charge separations

Electrons

INFN

- Highest energy currently available spectrometric electron flux
 - Calorimeters (eg. ATIC) cannot separate e⁺ from e⁻
 - Separate e⁺ and e⁻ spectra by Fermi using the Earth's magnetic field

O. Adriani et al, Physical Review Letters 106, 201101 (2011)

- Energy measurement can be done separately by tracker and calorimeter
 - Possibility to check instrumental effects and correction factors (eg. bremsstrahlung correction in tracker)

Positrons

- Spectrometer alone can't help in separating relativistic protons from positrons
- First consistency criterion: energy-rigidity match
- Second criterion: shower topology
- Residual contamination estimated by statistical methods, using only flight data

- Work in progress to cross-check the results and extend energy range
 - Alternative approach based on artificial neural networks
 - Lower limit on flux up to 300 GeV

- Absolute positron flux
 - Obtained from neural network analysis based on Multi-Layer Perceptrons (MLP)

Pamela

Interpretations

Rising positron fraction requires a primary positron component (Serpico, Phys.Rev. D79 (2009) 021302)

Astrophysical objects

- Pulsars (Hooper, Blasi & Serpico, JCAP 0901 (2009) 025)
- Secondary production in SNR (Blasi, Phys.Rev.Lett. 103 (2009) 051104)

Dark Matter annihilation/decay

- Neutralino annihilation (Bergström, Bringmann & Edsjö, Phys.Rev. D78 (2008) 103520)
- Kaluza-Klein annihilation (Hooper & Zurek, Phys.Rev. D79 (2009) 103529)
- DM decay (Ibarra & Tran, JCAP 0902 (2009) 021)

Some tensions:

- Hard positron spectrum (very large CS, local DM clump, Sommerfeld enhancement...)
- No anomaly in antiproton spectrum ("leptophilic" DM)
- No DM signals in Fermi-LAT data yet...

.....

Isotopes

• Non-relativistic isotopes can be identified by means of a Time-of-Flight measurement:

NFN

• Independent measurements of R and β give the mass of the particle

Trapped particles

- The Earth's magnetic field can act as a "charged particles trap"
 - Van Allen's radiation belts

- Due to relative inclination of Earth's rotation and magnetic axes, radiation belt comes closer to Earth's surface ~ above Brazil
 - South Atlantic Anomaly (SAA)
- PAMELA's orbit height: 360 600 km

Solar physics

Solar modulation

- Particles entering in the heliosphere from interstellar space interacts with solar magnetosphere and solar wind
- Time dependence of low energy fluxes, related to solar activity
- Modulation effects depends on sign-of-charge

Pamela

Summary

- The PAMELA experiment has been taking data for more than 6 years, since June 2006
- Its capabilities make it possible to investigate many aspects of particle astrophysics, from dark matter to solar and geomagnetic physics
- Many new features discovered thanks to high precision, high statistics measurements, that raised interest and discussions in scientific community
- Analysis is going on to refine previous results and provide new ones

PAMELA in a shot!!

INFN

. .