

The R&D of Microchannel-Plate-Based Large Area Photomultiplier (MCP-PMT) at IHEP

Sen Qian

Institute of High energy Physics, Chinese Academy of Science qians@ihep.ac.cn

On Behalf of the Workgroup

Outline

▶1. The Motivation;

▶2. The Design of the new MCP-PMT;

➤3. The Research project;

▶4. The Status of the Prototypes ;

▶5. Summary.

Outline

▶1. The Motivation;

- >1.1 What is photomultiplier Tube (PMT)?
- >1.2 The relationship between the PMT and neutrino detection ;
- >1.3 The requirements of the PMT for the neutrino detection project

> 1.1 What is photomultiplier Tube (PMT)?

> 1.2 The relationship between the PMT and neutrino detection

Large Format PMTs for Neutrino Experiments

> 1.3 The requirements of the PMT for the neutrino detection

Status	Project	PMT	Number	Company	
Work	ANTARES (mediterranean sea)	10"	1000	Hamamatsu	
Work	IceCube (South Pole)	10"	4800	Hamamatsu	
Work	KamLADE (Japan)	17"	1325	Hamamatsu	
		20"	554+250		
Work	Super K (Japan)	20"	11146	Hamamatsu	
Work	Sudbury SNO (Canada)	8"	9600	Hamamatsu	
Work	DayaBay (China)	8"	2000	Hamamatsu	
Plan	DayaBay II (China)	20"	20000	China?	
Plan	KM3Net	Large	10000	?	
		small	300000	?	
Plan	LEAN (France)	8"	53000	?	
Plan	LBNE (American)	12"	30000	?	
Plan	MEMPHYS(Europe)	12"	81000	?	
Plan	Hyper K	20"	Super K*20	Hamamatsu	
Plan	Hanohano (Hawaii)	10"	20000	?	

PS:The statistical data come from the NDIP,TIPP,APS,SPCS,NNN et.al conference reports.

Outline

▶2. The Design of the new MCP-PMT;

- >2.1 The Conventional PMT;
- ▶2.2 The Quantum Efficiency of PMT;
- >2.3 The R&D of the new type of PMT;
- >2.4 The new design of a large area PMT ;
- >2.5 The performance of the MCP-PMT;

≻2.1 The Conventional PMT

Photon Detection Efficiency (PE)= QE_{Trans} * CE = 25% * 60% = 15%

> 2.2 The Quantum Efficiency of PMT

High QE PMTs: SBA (35%) and UBA (43%)

are only available in small format (< 5" diameter ?)

Can we improve the Quantum Efficiency of Photocathode or

Photon Detection Efficiency for the large area 20" PMT ?

?? 20" UBA/SBA photocathode PMT from Hamamatzu ? QE: 20% \rightarrow 40%

?? 20" New large area PMT ? Quantum Efficiency > 40% ?

or Photon Detection Efficiency: $15\% \rightarrow 30\%$

> 2.3 The R&D of the new type of PMT

LAPPD project – ANL, Chicago

Comparison of Dimension between 10-inch and 12-inch PMT

12" PMT with SBA photocathode--Hamamatzu

>2.4 The new design of a large area PMT

 $PD = QE_{Trans} *CE + TR_{Photo}QE_{Ref} *CE = 30\% *70\% + 40\% *30\% *70\% = 30\%$ Photon Detection Efficiency: 15% \rightarrow 30% ; \times ~2 at least !

Outline

➤3. The Research project;

- >3.1 Project team and Collaborators;
- >3.2 The Organization Chart;
- >3.3 The Technical Workshop & Collaboration Meeting;
- >3.4 The R&D plan of MCP-PMT (schedule);
- >3.5 The New PMT factory in China;
- >3.6 How to produce the MCP-PMT;
- >3.7 The R&D plan of MCP-PMT (method);
- >3.8 The Challenge of the Research Project ;

≻3.1 Project team and Collaborators

effort by Yifang Wang;

Other company and institute (not join us yet):

3.2 The Organization Chart

Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)

> 3.3 The Technical Workshop & Collaboration Meeting

Technical Workshop

Kunming 20110911

Xian 20120227

Nanjing 20120620

Collaboration Meeting

Beijing 20111118

Nanjing 20120621

>3.4 The R&D plan of MCP-PMT (schedule)

≻3.5 The New PMT factory in China

HZC has bought the PMT production Line from Photonis in 2011, and will produce the first prototype in the end of this year in Hainan province in China.

- Patents and Technique documents;
- >Technique Trainings;
- Technique Support for R&D;

User authentication & product certification

PMT Prototype R&D Plan for the DayaBay II

3.6 How to produce the PMT

The anode and electrode -MCP/ Cu / stainless steel

The reflection film --AI

The electric film --Sb

The alkali metal -K/Cs

The Photocathode

> 3.7 The R&D plan of MCP-PMT (method)

3.8 The Challenge of the Research Project

>Low radioactive background glass;

Glass Shell

Outline

▶4. The Status of the Prototypes ;

▶4.1 The prototypes;

- ≻4.2 The performance of 5" MCP-PMT;
- >4.3 The performance of 8" MCP-PMT;

5.1 The Prototypes

5.2 Performance of the 5"MCP-PMT prototype

> The photoelectron spectrum of a prototype: 5" IHEP-MCP-PMT

>MPE vs the luminance of the LED light

**--adjust the working voltage of the LED to adjust the luminance of the LED light.

> 5.3 Performance of the 8" MCP-PMT prototype

8" ellipse

8" spherical

Summary

>1. A new type of MCP-PMT is designed for the next generation neutrino exp.

- ✓ Large ares: ~ 20";
- ✓ High photon detection efficiency: ~30%, al least \times 2 than normal PMT;
- ✓ Low coat: ~ low cost MCPs;

>2. The R&D process is composing with 3 steps.

- ① 5"(8") prototype with transmission photocathode;
- 2 5"(8") prototype with transmission and reflection photocathode;
- ③ 20" prototype with transmission and reflection photocathode;

>3. The R&D work is divided into 7 Parts to product the prototype to detect SPE:

①Photocathode; ②MCP; ③Glass; ④Photomultiplier;

⑤vacuum equipment; ⑥Electronic; ⑦Test system;

There are lots of work to do!

We need any help from other institute and company!

Thank! 谢谢!

Thanks for your attention! Any comment and suggestion are welcomed!

> 2.5 The performance of the MCP-PMT

Characteristics	unit	R3809U-50 (Hamamatsu)	R5912 (Hamamatsu)	MCP-PMT-8 (IHEP)	R3600 (Hamamatsu)	MCP-PMT-20 (IHEP)
size	inch	2	8	8	20	20
Spectral Response	nm	160~850	300~650	300~650	300~650	300~650
Photocathode Material		Multialkali	Bialkali	Bialkali	Bialkali	Bialkali
Electron Multiplier		МСР	Dynode	МСР	Dynode	MCP
Gain		2×10^{5}	$\geq 1 \times 10^7$	≥1×10 ⁵	$\geq 1 \times 10^7$	≥1×10 ⁵
Photocathode mode		transmission	transmission	reflection + transmission	transmission	reflection + transmission
Cathode Sensitivity	uA/lm	150	70	70	60	70 ~100
Quantum Efficiency (400nm)	%		22	20~40??	20	20~40??
Electron Multiplier Collection efficiency	%	~ 60%	~ 60%	~ 70%	~ 60%	~ 60%
Efficiency of detecting photoelectron	%		< 13	> 20	<12	> 20
Anode Dark Current	nA	100	≤700	≤100	≤1000	≤100
Anode Pulse Rise Time	ns	0.150	3.8	≤ 5	10	≤10
Transit Time Spread (TTS)	ns	≪0.025	2.4	≤1	5.5	≤2
Anti-Magnetic characteristics		Good	normal	normal	normal	normal
Glass			Low-Potassium Glass	Low-Potassium Glass CN-2#	HARIO-32	Low-Potassium Glass- CN-2#