

High Intensity Muon Source for Neutrino and Muon Physics

Yoshitaka Kuno Department of Physics, Osaka University

2012/09/24 22:48

September 25, 2012 Shenzhen, China, NPB2012

Outline

- Muon Physics
 - Charged lepton flavor violation (CLFV) with muons
 - What is µ-e conversion in a muonic atom ?
 - COMET to search for µ-e conversion at J-PARC
 - COMET staged approach (new)
 - µ-e conversion with B<10⁻¹⁹ (PRISM)
- Highly intense Muon Source at Osaka University MuSIC -
- Neutrino Physics
 - Neutrino source based on muon storage FFAG ring
- Summary

Charged Lepton Flavor Violation (CLFV) with Muons

Н

The Standard Model is considered to be incomplete. New Physics is needed.

The LHC has not found any new particles so far yet, besides a Higgs-like particle.

The Standard Model of Particle Interactions

Three Generations of Mat/

UC t

0

Н

The Standard Model is considered to be incomplete. New Physics is needed.

The LHC has not found any new particles so far yet, besides a Higgs-like particle.

The precision measurements become more important.

The Standard Model of Particle Interactions

Three Generations of Mat/

UC t

Ш

b

Н

The Standard Model is considered to be incomplete. New Physics is needed.

The LHC has not found any new particles so far yet, besides a Higgs-like particle.

The precision measurements become more important.

Rare Decays

The Standard Model of Particle Interactions

Three Generations of Mat/

UCt

b

New physics effects may be very small.

New physics effects may be very small.

SM contribution is dominant.

New physics effects may be very small.

SM contribution is dominant.

SM contribution is highly suppressed.

New physics effects may be very small.

SM contribution is dominant.

SM contribution is highly suppressed.

 $B \sim \frac{1}{\sqrt{N}}$

SM contribution is forbidden.

New physics effects may be very small.

CLFV in the SM with Massive Neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

CLFV in the SM with Massive Neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

CLFV in the SM with Massive Neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

CLFV Sensitivity to Energy Scale of NP

CLFV Sensitivity to Energy Scale of NP

A. de Gouvea's effective interaction for µ-e conversion $L_{\rm CLFV} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\rm R} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu} + \frac{\kappa}{1+\kappa} \frac{1}{\Lambda^2} (\bar{\mu}_{\rm L} \gamma^{\mu} e_{\rm L}) (\bar{q}_{\rm L} \gamma_{\mu} q_{\rm L})$

 Λ : energy scale of new physics

$$B(\mu \to e\gamma) < 2.4 \times 10^{-12}$$
$$B(\mu N \to eN) < 7 \times 10^{-13}$$

CLFV Sensitivity to Energy Scale of NP

A. de Gouvea's effective interaction for µ-e conversion

$$L_{\rm CLFV} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\rm R} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu} + \frac{\kappa}{1+\kappa} \frac{1}{\Lambda^2} (\bar{\mu}_{\rm L} \gamma^{\mu} e_{\rm L}) (\bar{q}_{\rm L} \gamma_{\mu} q_{\rm L})$$

 Λ : energy scale of new physics

$$B(\mu \to e\gamma) < 2.4 \times 10^{-12}$$
$$B(\mu N \to eN) < 7 \times 10^{-13}$$

CLFV Sensitivity to **Energy Scale of NP** A. de Gouvea's effective interaction for µ-e conversion 104 $L_{\rm CLFV} = \frac{1}{1+\kappa} \frac{m_{\mu}}{\Lambda^2} \bar{\mu}_{\rm R} \sigma^{\mu\nu} e_{\rm L} F_{\mu\nu}$ $+\frac{\kappa}{1+\kappa}\frac{1}{\Lambda^2}(\bar{\mu}_{\rm L}\gamma^{\mu}e_{\rm L})(\bar{q}_{\rm L}\gamma_{\mu}q_{\rm L})$ Л / [TeV] Λ : energy scale of new physics 10³ $O(10^{3})$ TeV $B(\mu \to e\gamma) < 2.4 \times 10^{-12}$ 10^{2} $B(\mu N \to eN) < 7 \times 10^{-13}$ 0.01

from Y. Okada san's slide (2010)

CLFV and Neutrino Mass Generation

2

from Y. Okada san's slide (2010)

CLFV and Neutrino Mass Generation

arXiv:1207.7227v1 [hep-ph] 31 Jul 2012

SUSY Predictions (a la A. Masiero)

A. Ibara, E. Molinaro, S.T. Petcov, Phys. Rev. D84 (2011) 013005

CLFV with TeV Seesaw (Type-I)

2

TeV seesaw type-I models predict sizable branching ratio of CLFV with right-handed neutrino mass of O(TeV).

extra dimension model

CLFV Predictions

Various BSM models predict sizable muon CLFV, as well as tau CLFV.

"DNA of New Physics" (a la Prof. Dr. A.J. Buras)

from D. Hitlin's talk at ICHEP2012

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d _n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

These are a subset of a subset listed by Buras and Girrbach MFV, CMFV, $2HDM_{MFV}$, LHT, SM4, SUSY flavor. SO(10) – GUT, SSU(5)_{HN}, FBMSSM, RHMFV, L-R, RS₀, gauge flavor,

The pattern of measurement:

- $\star \star \star$ large effects
- ★★ visible but small effects
- ★ unobservable effects
 is characteristic,

often uniquely so,

of a particular model

GLOSSARY					
AC [10]	RH currents & U(1) flavor symmetry				
RVV2 [11]	SU(3)-flavored MSSM				
AKM [12]	RH currents & SU(3) family symmetry				
δ LL [13]	CKM-like currents				
FBMSSM [14]	Flavor-blind MSSSM				
LHT [15]	Little Higgs with T Parity				
RS [16]	Warped Extra Dimensions				

"DNA of New Physics" (a la Prof. Dr. A.J. Buras)

from D. Hitlin's talk at ICHEP2012

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub

	-	-					
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

These are a subset of a subset listed by Buras and Girrbach MFV, CMFV, $2HDM_{MFV}$, LHT, SM4, SUSY flavor. SO(10) – GUT, SSU(5)_{HN}, FBMSSM, RHMFV, L-R, RS₀, gauge flavor,

The pattern of measurement:

- $\star \star \star$ large effects
- ★★ visible but small effects
- ★ unobservable effects
 is characteristic,

often uniquely so,

of a particular model

GLOSSARY					
AC [10]	RH currents & U(1) flavor symmetry				
RVV2 [11]	SU(3)-flavored MSSM				
AKM [12]	RH currents & SU(3) family symmetry				
δ LL [13]	CKM-like currents				
FBMSSM [14]	Flavor-blind MSSSM				
LHT [15]	Little Higgs with T Parity				
RS [16]	Warped Extra Dimensions				

µ-e conversion in a muonic atom

Present Limits and Future Projection

process	present limit	future		
$\mu \rightarrow e\gamma$	<2.4 x 10 ⁻¹²	<10-14	MEG at PSI	
$\mu \rightarrow eee$	<1.0 x 10 ⁻¹²	<10 ⁻¹⁶	Mu3e at PSI	
$\mu N \rightarrow eN (in Al)$	none	<10 ⁻¹⁶	Mu2e / COMET	
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10 ⁻¹²	<10 ⁻¹⁸	PRISM	
$\tau \rightarrow e\gamma$	<1.1 x 10 ⁻⁷	<10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B	
τ→eee	<3.6 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B	
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B	
τ→μμμ	<3.2 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B	

Present Limits and Future Projection

Best because of no limitation from accidental background

process	present limit		future	
$\mu \rightarrow e\gamma$	<2.4 x 10 ⁻¹²		<10-14	MEG at PSI
$\mu \rightarrow eee$	<1.0 x 10 ⁻¹²		<10 ⁻¹⁶	Mu3e at PSI
$\mu N \rightarrow eN$ (in Al)	none	<10 ⁻¹⁶		Mu2e / COMET
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10 ⁻¹²	<10 ⁻¹⁸		PRISM
$\tau \rightarrow e\gamma$	<1.1 x 10 ⁻⁷	<10 ⁻⁹ - 10 ⁻¹⁰		super KEKB/B
τ→eee	<3.6 x 10 ⁻⁸	<	:10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<	:10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B
$\tau \rightarrow \mu \mu \mu$	<3.2 x 10 ⁻⁸	<	:10 ⁻⁹ - 10 ⁻¹⁰	super KEKB/B

What is Muon to Electron Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

Event Signature : a single mono-energetic electron of 100 MeV
Backgrounds: (1) physics backgrounds ex. muon decay in orbit (DIO)
(2) beam-related backgrounds ex. radiative pion capture, muon decay in flight,
(3) cosmic rays, false tracking

Previous Measurements

SINDRUM-II (PSI)

PSI muon beam intensity ~ 10⁷⁻⁸/sec beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate.

Published Results (2004)

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

COMET at J-PARC

Improvements for Signal Sensitivity

To achieve a single sensitivity of 10⁻¹⁷, we need

10¹¹ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture and Muon Transport by Superconducting Solenoid System

(10¹¹ muons for 50 kW beam power)

Improvements for Background Rejection

Beam-related backgrounds

Beam pulsing with separation of 1µsec

measured between beam pulses

proton extinction = # protons between pulses/# protons in a pulse < 10⁻⁹

Muon DIO background - Iow-mass trackers in low-mass trackers in low-mass

improve electron energy resolution

Muon DIF background

curved solenoids for momentum selection eliminate energetic muons (>75 MeV/c)

base on the MELC proposal at Moscow Meson Factory

J-PARC at Tokai, Japan

µ-e conversion : COMET (E21) at J-PARC

COMET Collaboration

The COMET Collaboration

R. Akhmetshin, A. Bondar, L. Epshteyn, G. Fedotovich, D. Grigoriev, V. Kazanin, A. Ryzhenenkov, D. Shemyakin, Yu. Yudin Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

> R. Palmer Department of Physics, Brookhaven National Laboratory, USA

Y. Arimoto, K. Hasegawa, Y. Igarashi, M. Ikeno, S. Ishimoto, Y. Makida, T. Mibe, S. Mihara, T. Nakamoto, H. Nishiguchi, T. Ogitsu, C. Omori, N. Saito, K. Sasaki, M. Sugano, Y. Takubo, M. Tanaka, M. Tomizawa, T. Uchida, A. Yamamoto, M. Yamanaka, M. Yoshida, Y. Yoshii, K. Yoshimura High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

> Yu. Bagaturia Ilia State University (ISU), Tbilisi, Georgia

P. Dauncey, P. Dornan, B. Krikler, A. Kurup, J. Nash, J. Pasternak, Y. Uchida Imperial College London, UK

> P. Sarin, S. Umasankar Indian Institute of Technology Bonbay, India

Y. Iwashita Institute for Chemical Research, Kyoto University, Kyoto, Japan

V.V. Thuan Institute for Nuclear Science and Technology, Vietnam

H.-B. Li, C. Wu, Y. Yuan Institute of High Energy Physics (IHEP), China

A. Liparteliani, N. Mosulishvili, Yu. Tevzadze, I. Trekov, N. Tsverava Institute of High Energy Physics of I. Javakhishvili State University (HEPI TSU), Tbilisi, Georgia

S. Dymov, P. Evtoukhovich, V. Kalinnikov, A. Khvedelidze, A. Kulikov, G. Macharashvili, A. Moiseenko, B. Sabirov, V. Shmakova, Z. Tsmalaidze, E. Velicheva Joint Institute for Nuclear Research (JINR), Dubna, Russia

> M. Danilov, A. Drutskoy, V. Rusinov, E. Tarkovsky Institute for Theoretical and Experimental Physics (ITEP), Russia

T. Ota Max-Planck-Institute for Physics (Werner-Heisenberg-Institute), Munchen, Germany

Y. Mori, Y. Kuriyama, J.B. Lagrange

Kyoto University Research Reactor Institute, Kyoto, Japan C.V. Tao College of Natural Science, National Vietnam University, Vietnam

M. Aoki, I.H. Hasim T. Hayashi, Y. Hino, T. Iwami, T. Itahashi, S. Ito, Y. Kuno*, Y. Matsumoto, T.H. Nam, H. Sakamoto, A. Sato, N.D. Thong, N.M. Truong, K. Yai Osaka University, Osaka, Japan

> M. Koike, J. Sato Saitama University, Japan

D. Bryman University of British Columbia, Vancouver, Canada

S. Cook, R. D'Arcy, A. Edmonds, M. Lancaster, M. Wing University College London, UK

> J.F. Solehan, W.A. Tajuddin University of Malaya, Malaysia

R.B. Appleby, W. Bertsche, M. Gersabeck, H. Owen, C. Parkes, G. Xia University of Manchester, UK

> F. Azfar, M. John University of Oxford, UK

Md. I. Hossain University Technology Malaysia

> T. Numao TRIUMF, Canada

* Contact Person

109 collaborators 25 institutes 11 countries

COMET Collaboration

The COMET Collaboration

R. Akhmetshin, A. Bondar, L. Epshteyn, G. Fedotovich, D. Grigoriev, V. Kazanin, A. Ryzhenenkov, D. Shemyakin, Yu. Yudin Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

> R. Palmer Department of Physics, Brookhaven National Laboratory, USA

Y. Arimoto, K. Hasegawa, Y. Igarashi, M. Ikeno, S. Ishimoto, Y. Makida, T. Mibe,
S. Mihara, T. Nakamoto, H. Nishiguchi, T. Ogitsu, C. Omori, N. Saito, K. Sasaki,
M. Sugano, Y. Takubo, M. Tanaka, M. Tomizawa, T. Uchida, A. Yamamoto,
M. Yamanaka, M. Yoshida, Y. Yoshii, K. Yoshimura
High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Yu. Bagaturia Ilia State University (ISU), Tbilisi, Georgia

P. Dauncey, P. Dornan, B. Krikler, A. Kurup, J. Nash, J. Pasternak, Y. Uchida Imperial College London, UK

> P. Sarin, S. Umasankar Indian Institute of Technology Bonbay, India

Y. Iwashita Institute for Chemical Research, Kyoto University, Kyoto, Japan

V.V. Thuan Institute for Nuclear Science and Technology, Vietnam

H.-B. Li, C. Wu, Y. Yuan Institute of High Energy Physics (IHEP), China

A. Liparteliani, N. Mosulishvili, Yu. Tevzadze, I. Trekov, N. Tsverava Institute of High Energy Physics of I.Javakhishvili State University (HEPI TSU), Tbilisi, Georgia

 S. Dymov, P. Evtoukhovich, V. Kalinnikov, A. Khvedelidze, A. Kulikov,
 G. Macharashvili, A. Moiseenko, B. Sabirov, V. Shmakova, Z. Tsmalaidze, E. Velicheva Joint Institute for Nuclear Research (JINR), Dubna, Russia

> M. Danilov, A. Drutskoy, V. Rusinov, E. Tarkovsky Institute for Theoretical and Experimental Physics (ITEP), Russia

T. Ota Max-Planck-Institute for Physics (Werner-Heisenberg-Institute), Munchen, Germany

Y. Mori, Y. Kuriyama, J.B. Lagrange

Kyoto University Research Reactor Institute, Kyoto, Japan C.V. Tao College of Natural Science, National Vietnam University, Vietnam

M. Aoki, I.H. Hasim T. Hayashi, Y. Hino, T. Iwami, T. Itahashi, S. Ito, Y. Kuno^{*}, Y. Matsumoto, T.H. Nam, H. Sakamoto, A. Sato, N.D. Thong, N.M. Truong, K. Yai Osaka University, Osaka, Japan

> M. Koike, J. Sato Saitama University, Japan

D. Bryman University of British Columbia, Vancouver, Canada

S. Cook, R. D'Arcy, A. Edmonds, M. Lancaster, M. Wing University College London, UK

> J.F. Solehan, W.A. Tajuddin University of Malaya, Malaysia

R.B. Appleby, W. Bertsche, M. Gersabeck, H. Owen, C. Parkes, G. Xia University of Manchester, UK

> F. Azfar, M. John University of Oxford, UK

Md. I. Hossain University Technology Malaysia

> T. Numao TRIUMF, Canada

from IHEP

* Contact Person

109 collaborators 25 institutes 11 countries

Charged Particle Trajectory in Curved Solenoid

 A center of helical trajectory of charged particles in a curved solenoidal field is drifted by

$$D = \frac{p}{qB} \theta_{bend} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

D : drift distance B : Solenoid field θ_{bend} : Bending angle of the solenoid channel p : Momentum of the particle q : Charge of the particle θ : $atan(P_T/P_L)$

• This can be used for charge and momentum selection.

 This drift can be compensated by can auxiliary field parallel to the drift direction given by

$$B_{comp} = \frac{p}{qr} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

p: Momentum of the particle q: Charge of the particle r: Major radius of the solenoid θ : $atan(P_T/P_L)$ 上流力-ブドソレノイドの補正磁場

Comparison : COMET vs. Mu2e

	Detector Solenoid Tracker Stopping Tracker Stopping Target Colimators Production Solenoid Production Solenoi	
	Mu2e@FNAL	COMET@J-PARC
muon beamline	S-shape	C-shape
electron spectrometer	Straight solenoid	Curved solenoid

Comparison : COMET vs. Mu2e

Comparison : COMET vs. Mu2e

COMET Staged Approach

COMET Phase-I (staged scenario) - from J-PARC PAC report, March 2012

COMET Phase-I (staged scenario) - from J-PARC PAC report, March 2012

Reflecting the PAC's high evaluation of the physics associated with the COMET experiment and the positive results in the report recently published by a sub-committee of Japanese Association on High Energy Physics (JAHEP) on the future high energy physics projects, the COMET experiment is a high priority component for the J-PARC program. Considering that this high-priority experiment needs a large investment in infrastructure and hence a long time to realize, it is important to start the construction of the COMET beam line in the next 5 years.

The IPNS proposes, as the first priority item in the next five-year plan, that the upstream part of the high-p beam line be constructed and co-used by the COMET experiment and that the first half of the muon capture solenoid be constructed simultaneously.

A consequence of this plan is that the K1.1BR beam line will not be usable after the installation of the production target of COMET. This conflict, as was pointed out by the PAC in the last meeting, will have a serious impact on the TREK experiments (E06 and P36). The PAC is requested to consider and comment on this in its evaluation during the meeting.

COMET Staged Approach

COMET Staged Approach

COMET Phase-I

COMET Phase-II

Goals of COMET Phase-I

Background Study for COMET Phase-II

direct measurement of potential background sources for the full COMET experiment by using the actual COMET beamline constructed at Phase-I

2	

Search for µ-e conversion

a search for μ^--e^- conversion at intermediate sensitivity which would be more than 100 times better than the SINDRUM-II limit

Search for µ-e conversion at Intermediate Sensitivity (CDC)

Design Philosophy

by keeping an open end in a solenoid geometry, beam particles continue downstream and escape the detector.

 CDC design is based on Belle II CDC (small cell part) Design difference (from LOI) •He:C₂H₆ (=50:50) gas •trigger counters at the both ends (smaller acceptance) no proton absorber •CDC hit rates •40 kHz/wire at the innermost layer by proton emission from muon capture (0.15 per capture) •CDC trigger rate ●270 Hz from DIO

Search for µ-e conversion at Intermediate Sensitivity (CDC)

 cylindrical drift chamber (CDC)
 Orift Chamber
 Design
 CDC construction
 by Osaka U (chamber) and IHEP (readout)

CDC design is based on Belle II CDC (small cell part)
Design difference (from LOI)

> (=50:50) gas ounters at the ds (smaller nce)

which needs funds from China! n absorber •CDC hit rates

Cherenkov Hodoscope

Design Philosophy

by keeping an open end in a solenoid geometry, beam particles continue downstream and escape the detector. 40 kHz/wire at the innermost layer by proton emission from muon capture (0.15 per capture)
CDC trigger rate
270 Hz from DIO

Signal Event Sensitivity (SES) for COMET Phase-I CDC

Event selection	Value	Comments
Geometrical acceptance	0.24	tracking efficiency included
Momentum selection	0.74	$104.1 \text{ MeV}/c < P_e < 106 \text{ MeV}/c$
Timing selection	0.39	same as COMET
Trigger and DAQ	0.9	same as COMET
Total	0.06	

Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- N_{μ} is a number of stopping muons in the muon stopping target. It is 8.7×10^{15} muons.
- 5.8x10⁹ stopped μ/s with 3 kW proton beam power, with 1.5x10⁶ sec running.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.
- A_e is the detector acceptance, which is 0.06.

$$B(\mu^{-} + Al \to e^{-} + Al) = 3.1 \times 10^{-15}$$

$$B(\mu^{-} + Al \to e^{-} + Al) < 7 \times 10^{-15} \quad (90\% C.L.)$$

Background Estimation for COMET Phase-I CDC

Background	estimated events	
Muon decay in orbit	0.01	
Radiative muon capture	< 0.001	BR=3x10^(-15)
Neutron emission after muon capture	< 0.001	
Charged particle emission after muon capture	< 0.001	Week
Radiative pion capture	0.0096*	
Beam electrons		
Muon decay in flight	$< 0.00048^{*}$	
Pion decay in flight		
Neutron induced background	$\sim 0^*$	
Delayed radiative pion capture	0.002	
Anti-proton induced backgrounds	0.007	
Electrons from cosmic ray muons	< 0.0002	
Total	0.03	
]	102 102.5 103 103.5 104 104.5 105 105.5 106 Momentum [MeV/c]

with proton extinction factor of 3x10⁻¹¹

Expected BG events are about 0.03 at S.E.S. of 3x10⁻¹⁵.

Background Estimation for COMET Phase-I CDC studied by a IHEP student.

with proton extinction factor of 3x10⁻¹¹

Expected BG events are about 0.03 at S.E.S. of 3x10⁻¹⁵.

Schedule of COMET and Mu2e

Schedule of COMET and Mu2e

Comparison of COMET Phase-I / Phase-II and Mu2e

Comparison of COMET Phase-I / Phase-II and Mu2e

90% C.L. upper limit is 7x10⁻¹³ (SINDRUM)

	S.E. sensitivity	BG events at aimed sensitivity	running time (sec)	Year	Comments
COMET Phase-I	3x10 ⁻¹⁵	0.03	1.5x10 ⁶	~2016	from Proposal (2012)
COMET Phase-II	3x10 ⁻¹⁷	0.34	2x10 ⁷	~2020	from CDR (2009)
Mu2e	3x10 ⁻¹⁷	0.4	3x (2x10 ⁷)	~2020	J. Miller's talk at SSP2012

MuSIC - Highly Intense Muon Source

MuSIC@RCNP, Osaka University

RCNP has two cyclotrons. A proton beam with 392MeV, $1 \mu A$ is provided from the Ring Cyclotron (up to $5 \mu A$ in near future).

The MuSIC is in the largest experimental hall, the west experimental hall.

MuSIC Layout

MuSIC Layout

MuSIC Present Layout

MuSIC at RCNP, Osaka University

Osaka University

60000

50000

40000

^{ID} 30000

20000

10000

MuSIC Muon Yields (Measu

Osaka University

60000

50000 40000

₹ 30000

20000

10000

MuSIC Muon Yields (Measu

10⁸ muons/sec with 400 W at MuSIC eg. 10⁸ muons/s with 1.2 MW at PSI

60000

50000 40000

₹ 30000

20000

10⁸ muons/sec with 400 W at MuSIC eg. 10⁸ muons/s with 1.2 MW at PSI

1000 times vement

60000

50000

10⁸ muons/sec with 400 W at MuSIC eg. 10⁸ muons/s with 1.2 MW at PSI

1000 times improvement

μ -e conversion with B<10⁻¹⁹

μ-e conversion at S.E. sensitivity of 3x10⁻¹⁹ PRISM/PRIME (with muon storage ring)

R&D on the PRISM-FFAG Muon Storage Ring at Osaka University

Phase rotation has been demonstrated. PRISM Task Force (UK&Japan) is active for desgn.

Neutrino Source based on Muon Storage Ring

EUROnu: Conclusion

Input for CERN Strategy Review:

EUROnu has made a physics performance and cost comparison between a 4 MW CERN to Frejus Super Beam, a 10 GeV Neutrino Factory and a γ=100 Beta Beam, all based at CERN.

The physics comparison has demonstrated that the Neutrino Factory has the best physics reach for CP-violation and the mass hierarchy,

while a combination of the Super Beam and Beta Beam is required to be competitive.

Although far advanced, the cost comparison is not yet at the stage where it can be made public. Nevertheless, it has been demonstrated that there is not a significant cost advantage in building the Super Beam and Beta Beam combination, rather than the Neutrino Factory.

As a result, the recommendation of EUROnu is the construction and operation of a 10 GeV Neutrino Factory as soon as possible, implemented using a staged approach.

EUROnu: Conclusion

Input for CERN Strategy Review:

EUROnu has made a physics performance and cost comparison between a 4 MW CERN to Frejus Super Beam, a 10 GeV Neutrino Factory and a γ=100 Beta Beam, all based at CERN.

The physics comparison has demonstrated that the Neutrino Factory has the best physics reach for CP-violation and the mass hierarchy,

while a combination of the Super Beam and Beta Beam is required to be competitive.

Although far advanced, the cost comparison is not yet at the stage where it can be made public. Nevertheless, it has been demonstrated that there is not a significant cost advantage in building the Super Beam and Beta Beam combination, rather than the Neutrino Factory.

As a result, the recommendation of EUROnu is the construction and operation of a 10 GeV Neutrino Factory as soon as possible, implemented using a staged approach.

International Design Study for a Neutrino Factory (IDS-NF)

• Targeting a Reference Design Report on 2013 timescale

Updated baseline design: 10GeV muons, 100kt MIND @ 2000km, 10²¹ useful decays/y

*) RLA: recirculating linear accelerator

**) FFAG: fixed-field alternating gradient accelerator

vSTORM

- A new Lol of a short-baseline neutrino experiment has been submitted to FNAL-PAC.
 - Physics:
 - study of sterile neutrinos
 - precise measurement of neutrinonucleon scattering cross sections.
- A production of neutrino beams from a muon storage ring without any cooling section.
- For the decay ring,
 - large transverse acceptance
 - large momentum acceptance
 - are required to increase the intensity of the v beam.
- Two candidates
 - FODO racetrack
 - FFAG racetrack

Study of Racetrack FFAGs for vSTORM

• J.B.Lagrange and Y.Mori proposed two racetrack FFAG for the decay ring.

 They studied performance of these FFAGs by their original tracking code, which cannot study decay of muon.

from A. Sato talk at NuFACT2012

Study of Racetrack FFAGs for vSTORM

J.B.Lagrange and Y.Mori proposed two racetrack FFAG for the decay ring.

 They studied performance of these FFAGs by their original tracking code, which cannot study decay of muon.

from A. Sato talk at NuFACT2012

muon beam, emittance in the storage ring

neutrino beam distribution

1

 $L_{S}=108 \text{ m}, L_{D}=26 \text{ m}$

Summary

- CLFV would give the best opportunity to search for BSM. (So far, no BSM signals at the LHC.)
- µ-e conversion would be the best.
- Staged COMET will start in 2013.
- COMET Phase-I : <10⁻⁽¹⁴⁻¹⁵⁾ (2016/17), and COMET Phase-II : <10⁻¹⁶ (~2021),
- R&D on PRISM/PRIME for <10⁻¹⁸ is underway.
- MuSIC@Osaka ~10⁸ µ/s with 400 W demonstrated.
- Neutrino sources based on muon storage ring would become important.

Summary

- CLFV would give the best opportunity to search for BSM. (So far, no BSM signals at the LHC.)
- µ-e conversion would be the best.
- Staged COMET will start in 2013.
- COMET Phase-I : <10⁻⁽¹⁴⁻¹⁵⁾ (2016/17), and COMET Phase-II : <10⁻¹⁶ (~2021),
- R&D on PRISM/PRIME for <10⁻¹⁸ is underway.
- MuSIC@Osaka ~10⁸ µ/s with 400 W demonstrated.
- Neutrino sources based on muon storage ring would become important.

New collaborators to COMET are welcome.