

E133

E135

E137

September 23, NPB2012

Atsumu Suzuki (鈴木 州)

Kobe University (for T2K collaboration)

Chiba

Pointer 36° 23'41.59" N 139° 11'54.71" E elev 665 m

N35

shima

image NASA © 2007 Europa Technologies Image © 2007 TerraMetrics © 2007 ZENRIN - 1 41 Streaming

J-PARC

vatshima

kushima

T2K Collaboration

2

Outline

- **1. Introduction**
- 2. T2K Experiment
 - **Overview**
 - **Collected Data**
 - Near Detector(ND280)
 - Far Detector(SK)
- **3. Recent Results**
 - **Electron Neutrino Appearance**
 - **Muon Neutrino Disappearance**
- 4. Summary

1.Introduction

Motivation

3-flavor mixing describes (almost) all neutrino oscillation phenomena

(3 mixing angles, 2 independent mass differences, 1 CPV phase)

v_e appearance indicated by T2K in 2011

Phys.Rev.Lett. 107, 041801, 2011

6 electron neutrino events observed with 1.5 ± 0.3 BG events. p-value=0.007 (2.5 σ)

Appearance Signal

θ₁₃**≠0**

Further measurement is needed for CPV and Mass hierarchy.

2.T2K Experiment

Overview

T2K Main Goals:

★ Observation of $v_{\mu} \rightarrow v_{e}$ oscillation (v_{e} appearance)

\star Precision measurement of v_{μ} disappearance

Data collected and analyzed

for v_{μ} disappearance : 1.43 x 10²⁰ p.o.t.(Run1+2)

Near Detectors

On-Axis Detector (INGRID) monitors v: Beam direction Beam Intensity **Off-Axis Detector** (ND280): In SK direction measures: • v flux Cross sections using water targets to reduce systematic 11 errors

Near Detectors:Performance

Good tracking by ND280

Good PID by ND280

800

400

600

1000 1200 1400

TPC dE/dX (negative tracks)

1600 1800 2000

p (MeV/c)

Far detector (Super-K)

- Water Cherenkov detector w/ fiducial mass 22.5 kton
- **Record all the hit PMTs within** $\pm 500 \, \mu sec$ centered at the beam arrival time
 - **Detector Number of events** e-like 140 performance is Atmospheric v120 100 very good for 80 Sub GeV 60

40

20

-2

PID parameter

μ-like

• Data

MC

Good e-like (shower ing) / μ-like separation

Probability that μ is **mis-id**

Far Detector: Event Timing

Events at the T2K beam timing synchronized by GPS \bullet

Relative event timing to

Clear bunch structure !

 $\Delta T_0 = T_{GPS} @ SK - T_{GPS} @ J-PARC - TOF(~985 \mu sec)$

3.Recent Results

v_e Appearance: Analysis method

Flux prediction

w/ hadron production measurement (CERN NA61)

(Phys.Rev.C84:034604(2011), Phys.Rev.C85:035210(2012)) ND280 v_{μ} measurements in CCQE and nonQE samples

Flux & v int. cross section fit to constrain flux and v int. cross section uncertainties

v int. cross section model & uncertainties NEUT + uncertainties set from external data

fit result (flux & v int. cross section information) is extrapolated to oscillation parameter fit

detector

uncertainties

 v_e candidate events

Oscillation parameter *fit* to extract $sin^2 2\theta_{13}$ (δ_{CP} is scanned)

Other v int. cross section uncertainties

Far detector uncertainties

from atm.-v & π^0 control sample

ND280 ν_{μ} measurements

 (P_{μ}, θ_{μ}) distribution of CCQE and CCnQE enhanced samples are fitted to constrain the flux and ν cross sections (MC predictions at ND280 and SK).

- Good negative track in FV.
- Upstream TPC veto
- μ ID by TPC for CCQE
- 1 FGD-TPC track
- No decay-e in FGD

For CCQE selection, 40% eff. w/ 72% purity

Fit results are extrapolated to the prediction at the far detector.

Systematic errors are improved!

The predicted number of events and systematic uncertainties

The predicted # of events w/ 3.01×10^{20} p.o.t.

 $\sin^2 2\theta_{13} = 0.0 \quad \sin^2 2\theta_{13} = 0.1$ Event category 10.71 ± 1.10 Total 3.22 ± 0.43 0.187.79 ν_e signal 1.67 ν_e background 1.56 $\nu_{\mu} \text{ background}(\text{mainly NC}\pi^0)$ 1.211.21 $\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background 0.160.16

Systematic uncertainties

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux+ ν int.	87%	57%
${ m in}\ { m T2K}\ { m fit}$	0.1 70	0.1 70
ν int. (from other exp.)	5.9~%	7.5~%
Final state interaction	3.1~%	2.4~%
Far detector	7.1~%	3.1~%
Total	13.4~%	10.3~%
(T2K 2011 results:	~23%	~18%)

Big improvement !

the predicted # of event distribution

Uncertainties are reduced using ND280 measurement

v_e Event Selection

PID parameter

v_e Event Selection

of events

intrinsic beam v_e

20

ve candidate event selection

DUN 1 1 2 1 2 2 010 × 1020 DOT Data	Dete	MC Expectation w/ $\sin^2 2\theta_{13}=0.1$				
KUN 1+2+3 3.010 × 10 ² ° POT	Data	$\overline{ \begin{array}{c} \text{Signal} \\ v_{\mu} \rightarrow v_{e} \end{array} } $	BG total	$\overline{CC} (\nu_{\mu} + \bar{\nu}_{\mu})$	$CC(v_e+\bar{v}_e)$	NC
Fully contained FV at beam timing	174	12.35	165.47	117.33	7.67	40.48
Single ring	88	10.39	82.78	66.41	4.82	11.55
e-like	22	10.27	15.60	2.72	4.79	8.10
Evis>100MeV	21	10.04	13.53	1.76	4.75	7.01
No decay-e	16	8.63	10.09	0.33	3.76	6.00
2γ invariant mass cut	11	8.05	4.32	0.09	2.60	1.64
$E_v^{rec} < 1250 \text{ MeV}$	11	7.81	2.92	0.06	1.61	1.25
(MC sin ² 20 ₁₃ =0 case)		(0.18)	(3.04)	(0.06)	(1.73)	(1.25)
Efficiency [%]		60.7	1.0	0.0	20.0	0.9
$\begin{array}{c} \mathbf{f} \\ $	$\begin{array}{c c} & \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & $					
$ \underbrace{\text{Evidence of } v_e \text{ appearance } }_{200 3000} $						

Reconstructed v energy (MeV)

Latest ve candidate event (Run3)

Super-Kamiokande IV

T2K Beam Run 430013 Spill 4033842 Run 69739 Sub 201 Event 48168772 12-05-30:05:03:02 T2K beam dt = 2463.6 ns Inner: 2350 hits, 7009 pe Outer: 1 hits, 0 pe Trigger: 0x80000007 D_wall: 644.8 cm e-like, p = 693.4 MeV/c

Charge(pe)

visible energy : 693.4 MeV # of decay-e : 0 2γ Inv. mass : 1.2 MeV/c² recon. energy : 943.1 MeV

Oscillation parameter fit Three analysis methods used:

- Maximum likelihood fit using 2D-distributions of electron momentum & angle -> presented here
- Maximum likelihood fit using reconstructed neutrino energy distribution
- "Rate Only" analysis \rightarrow Single energy bin using **Feldman-Cousins technique**

 \rightarrow All three methods result in consistent values Difference in $p_e - \theta_e$ distribution gives good discrimination of signals from backgrounds:

Fit Results: Using Extended Likelihood

Results: θ_{13} vs δ_{CP} Scan

v_{μ} Disappearance (Run1+2)

31 v_{μ} candidate events using 1.43x10²⁰ POT 103.6 events expected w/ no oscillation

(Event selection: 1-ring, μ -like, $p_{\mu} > 200$ MeV/c, & # of decay-e < 2)

Result with all data(Run1+2+3) is coming soon.

4. Summay

Summary

v_e appearance result using 3.01 x 10²⁰ POT(~4% of proposed exposure)

- 11 candidate events observed
- P-Value is 0.0008 (equivalent to 3.2 σ for excluding θ_{13} =0)
 - Confirms previous result: 6 events with 1.5±0.3 expected for 1.43 × 10²⁰ POT [PRL 107, 041801, 2011]

$_{\bullet}\,\nu_{\mu}$ disappearance is observed based on 1.43 x 10^{20} POT

- Consistent with other experiments
- Updated v_{μ} disappearance measurement soon
- Important input to: $P(v_{\mu} \rightarrow v_{e}) = (\sin^{2}2\theta_{13}) \sin^{2}(\Delta m^{2}_{31}) L/4E$

+ (CPV term)+ (matter term) ...

Future high power runs are planned: 8 × 10²⁰ POT (2013) → 12 × 10²⁰ POT (2014) → 18 × 10²⁰ POT (2015)

ve candidate events (Run3)

.

.

T2K Beam Run 420024 Spill 2516122 Run 69628 Sub 1372 Event 327011631

12-04-09:20:14:06 T2K beam dt = 2506.7 ns Inner: 1776 hits, 4866 pe Outer: 4 hits, 3 pe Trigger: 0x80000007 D wall: 330.5 cm e-like, p = 435.2 MeV/c

Charge(pe) . >26.7

- * 23.3-26.7 * 20.2-23.3 * 17.3-20.2 • 6.2- 8.0 * 4.7- 6.2 • 3.3- 4.7 • 2.2- 3.3 * 1.3- 2.2
- 0.7- 1.3 • 0.2- 0.7 < 0.2


```
T2K Beam Run 420171 Spill 2909438
Run 69678 Sub 428 Event 101211860
12-04-23:10:09:36
T2K beam dt = 2494.1 ns
Inner: 1315 hits, 4407 pe
Outer: 1 hits, 0 pe
Trigger: 0x80000007
D_wall: 252.9 cm
e-like, p = 410.4 MeV/c
```

.

.

p-values of several	distribution a	re calculat	ed w/ toy MC
	DIIN1 + 0	DIINO	DIIN1 + 0 + 9

	RUN1+2	RUN3	RUN1+2+3
Dwall	22.9%	94.7%	39.4%
$From wall \text{ beam}_{ }$	1.34%	35.2%	6.05%
$R^2 + Z$	10.5%	74.6%	32.4%

T2K and (Daya Bay + RENO)

Daya Bay: arXiv:1203:1669 RENO: arXiv: 1204:0626

Oscillation fit

Method 2 : Rate + reconstructed Ev shape (1D)

Oscillation fit results

assuming $|\Delta m^2_{32}|=2.4x10^{-3} \text{ eV}^2 \text{ sin}^2 2\theta_{23}=1$

Method 2 : Rate + reconstructed Ev shape (1D)

Allowed region of sin²2 θ_{13} for each value of δ_{CP}

best fit w/ 68% CL error $@\delta_{CP}=0$

normal hierarchy:

 $\sin^2 2\theta_{13} = 0.098^{+0.052}_{-0.042}$

inverted hierarchy:

 $\sin^2 2\theta_{13} = 0.118^{+0.063}_{-0.049}$

Oscillation fit

assuming $|\Delta m^2_{32}|=2.4x10^{-3} \text{ eV}^2 \text{ sin}^2 2\theta_{23}=1$

Results obtained from all the three analysis are consistent

Comparison w/ 2011 results

Best-fit + 68% C.L. error for individual run period

Results w/ Run3 only are consistent with Run1+2

Allowed region of $sin^2 2\theta_{13}$ for each value of δ_{CP}

This result is consistent w/ the 2011(Run1+2) results and is improved