

Liquid Scintillators for Daya Bay Neutrino Experiment

Yayun Ding Institute of High Energy Physics on beload of L& Group, Daya Bay collaboration International Symposium on Neutrino Physics and Beyond Shenzhen, Sept. 23-26, 2012

114

A CONTRACTOR OF A CONTRACTOR O

Outlines

- Gd-LS for Daya Bay experiment
- Gd-LS recipe, developments and performance
- Gd-LS Mass production
 - Equipment test runs and Gd-LS Dry Run
 - Purification of raw materials
 - Gd-LS Mass production and characterization
- Pre-study of LS for Daya Bay Experiment phase II

The Daya Bay Detectors

- 8 detectors for experiment
- For each detector:
 - 40 t Mineral Oil
 - 20 t LS
 - 20 t Gd-LS as target
- 160t Gd-LS in total

• Our goal: Production of 185t Gd-LS and 185t LS (20t for backup)

Requirements for Gd-LS

- Long attenuation length (high optical transparency)
- High light yield
- Long-term stability
- Ultra-low impurity content (Radioactive contaminants U/Th $\leq 10^{-12}$ g/g)
- High flash point, low toxicity
- Compatible with acrylic vessels
- Practical for mass production(185t)
 - Different from small, fine experiments in the lab

Key points for R&D of Gd-LS

- Choice of scintillation solvents
 - Long attenuation length and high light yield
 - High flash point and low toxicity
 - Compatible with acrylic
- Choice of chelating ligands for Gd
 - Form stable complex with Gd
 - Good solubility in scintillation solvents
 - Long optical transmission at the PMT sensible region after loaded with Gd

Scintillation solvents

	PC	PCH	DIN	PXE	Dodecane	M. Oil	LAB
Formula	C ₉ H ₁ 2	C ₁₂ H ₁ 6	C ₁₆ H ₂ 0	C ₁₆ H ₁ 8	$C_{12}H_{26}$	$C_{n}H_{2n+}$ (n~30)	$C_{6}H_{5}-C_{n}H_{2n+2}$ (n~12)
F. P. /ºC	48	99	>140	145	71	215	130
Compatible with Acrylic	Ν	-	-	-	Y	Y	Y

• Linear Alkyl Benzene (LAB)

- Good optical property
- High flash point: 130°C
- Low toxicity
- Compatible with acrylic

Chelating ligands for Gd

Rule:

Hard acids bind strongly to hard bases and soft acids bind strongly to soft bases.

Choice of ligands

- Organophosphorus-compounds
 - Easily complex with Gd, high production yield
 - Increase the absorption around 430nm greatly when doped into scintillator
- $R = P = 0 - Gd^{3+}$

- β-diketones
 - Form a very stable complex with Gd
 - The complex has low solubility in scintillation solvent
 - high absorptions at 430 nm when doped into scintillator

Carboxylic Acids

2-Methylvaleric acid (2-MVA)
2-ethylhexanoic acid (2-EHA)
3, 5, 5-trimethylhexanoic acid (TMHA)

 $Gd(TMHA)_3$

Gd-LS Recipe developed by Daya Bay

- Scintillation solvent: LAB
- Fluors: 3g/L PPO, 15mg/L bis-MSB
- Gd was doped as Gd-TMHA (solid dissolution)

Prototype of AD at IHEP

• Motivation

- Validate the design principle
- Test technical details of tanks
- Test Gd-LS developed at IHEP
- Test calibration procedure and Pu-C source

• Achievements

- Energy response & MC Comparison
- Reconstruction algorithm
- Neutron response & Pu-C source
- Effects of reflectors
- Performance of Gd-LS

- I: 600 L 0.1% Gd-LS
 - **II**: 5 t mineral Oil

750 L IHEP prototype Gd-LS preparation and characterization

- 750 L 0.1% Gd-LS synthesized in Jan. 2007.
- Characterization of prototype Gd-LS
 - Gd% monitored more than 2.5 years: $0.11\% \pm 0.00\%$
 - Attenuation length measurement

Wavelength /nm	0.1% Gd-LS /m	LAB /m
410	7.3	4.4
430	13.7	14.9
450	13.0	16.8
470	14.1	15.5

Relative light yield measurement

	LS	Gd-LS
R. L. Y.	52.2%	53.0%

R.L.Y.= L.Y. of liquid scintillator / L.Y. of anthracene

Long-term stability of prototype Gd-LS

• Monitored by UV-Vis spectrophotometer for 2.5 years

Mass production

- Equipments and flow
 - Equipment test runs to test the equipments and conditions for production, and to optimize the production flow
- Purification of raw materials
- Mass production
 - 185 t Gd-LS, 50 batches, 3.7 t each batch

Equipment test Runs

- Equipment for mass production had been built and installed at IHEP before mass production
- 8 equipment test runs had been finished from Jun. 2008 to Apr. 2009 in order to test synthesis of Gd-TMHA solid, the most important and difficult step of production
- Equipments, flows, conditions had been tested and improved through test runs

Dry Run Gd-LS

- Then one batch (3.7t) Gd-LS had been produced to test the whole procedure of the production in Mar. 2009.
- Optical properties:
 - Attenuation length of Dry Run Gd-LS at 440 nm: 8.2 ± 0.3 m
 - Attenuation length of LAB at 440 nm : 15.0 ± 0.7 m
 - Attenuation length of 3g/L PPO in LAB: 7.8 ± 0.3 m

(PPO are not purified)

Dry Run Gd-LS

• Long-term stability, by UV-Vis spectrophotometer

• Equipment test runs and characterization of Dry Run Gd-LS show we are able to start Gd-LS mass production

- <u>388t LAB</u>: specially ordered, need no purification
 - LAB was produced when catalyst performance is the best
 - Narrow fractionation temperature range to 2°C
 - Remove heavy portion
 - Fluoroplastics pipes and nylon bags for filling and transportation

- <u>Bis-MSB</u>: scintillation grade, need no purificaiton
- <u>PPO</u>: —provided by *JINR*, *Russia*
 - purification of PPO is contract to a chemical company in Wuhan, China.
 - Purified PPO had been used for production only if it pass our QA/QC tests.
 - 1761 kg PPO had been tested on-site, 391kg disqualified PPO had been returned back for further purification

- $\underline{GdCl_3 \cdot xH_2O}$
 - 670kg $GdCl_3 \cdot xH_2O$ had been purified
 - Co-precipitation:
 - Dissolution
 - pH adjustment, precipitation
 - Filtration
 - QA/QC on-site

- <u>TMHA</u>
 - Vacuum distillation, more than 1 batch per day
 - QA/QC by UV-Vis spectrophotometer

- Gd-TMHA solid had been synthesized in pure water
- Water purification system built on-site for production
- Deionized water had been monitored by UV-Vis spectrophotometer and Resistivity meter for quality insurance

185t Gd-LS production

- 185t Gd-LS production (50 batches):
 - Produced underground in Hall 5 inside Daya Bay NPP

Production Procedures

- **Strict QA/QC** for every step of production
 - Deionized water, QA/QC
 - Purification of GdCl₃ and TMHA, QA/QC
 - Preparation of Gd and TMHA reactant solutions, QA/QC
 - Gd-TMHA synthesis, QA/QC;
 - Dissolution of fluors, QA/QC
 - Mixing of Gd-LS, QA/QC, pump into storage tank
- 50 batches Gd-LS had been prepared smoothly without any accident

185t Gd-LS prodution

- 1st batch started on Oct. 17th, 2010
- 50th batch finished on Jan. 10th, 2011

Gd-LS in Storage Tanks

- 50 batched Gd-LS were storage in 5 acrylic tanks
- N₂ protection for each tank.
 - Storage Tanks are relatively sealed, N_2 goes into the top area of 5 storage tanks without disturbing the liquid.
- ~60h circulation for each tank to make Gd-LS uniform

Characterization of Gd-LS

- Gd concentration, density, water content and UV-Vis spectra are consistent for 50 batches Gd-LS
- Attenuation length at 430nm is ~16m (requirement: >10m)

Measurement	#1	#2	#3	#4	#5
att. length	15.7m	16.0m	15.9m	15.8m	16.0m

Characterization of Gd-LS

long-term stability by UV-Vis

LS mass production

- 50 batched, simple mixing of LAB and fluors (PPO& bis-MSB)
- Use Gd-LS production equipment, need to be cleaned. No Gd detected after cleaning
- Stored in 2 nylon bags which are placed in 2storage pools.
- QA/QC

Quick Summary

- 185t Gd-LS/LS production for Daya Bay experiment had been performed successfully followed by strict QA/QC procedure
- Monitoring of Gd-LS in storage tanks and data taking of ADs show an excellent properties of Gd-LS.

LS for Daya Bay II

- Larger detectors, ~30m
- Need ~20,000t LS
- Attenuation length of scintillation solvent is important
 - Purification of scintillation solvent (LAB) is crucial
 - Goal: A.L.(LAB):30~40m
 - Daya Bay I: A.L.(LAB):<20m
 - Purification of fluors (PPO&bis-MSB)

Study of LAB at IHEP

- LAB had been purified by different methods
- Al_2O_3 is the best, but still can't meet our requirement
- What we do next:
 - Synthesis LAB by using high quality materials
 - Further purification of LAB
 - Purification of fluors

LAB	Abs/430nm	A.L.@430nm/m
Raw	0.0011	14.2
V.D.	0.0011	19.5
Silica gel	0.0010	18.6
Al ₂ O ₃	0.0005	22.3

