Quarkonium Production at LHCb

Marco Adinolfi

University of Bristol On behalf of the LHCb Collaboration

22 April 2013

	Introduction	J/ψ and $\Psi(2S)$	Ƴ(nS)	Double charmonium and open charm production	Conclusions
Out	line				

1 Introduction

2 J/ψ and $\Psi(2S)$

Ouble charmonium and open charm production

5 Conclusions

周 ト イ ヨ ト イ ヨ ト

Introduction J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmonium and open charm production

Conclusior

Why do we care about quarkonium?

- Since the first measurements at Tevatron the production of quarkonium states has proved a tough challenge.
- Various models have been proposed at different times and a combination of Color Octet and Color Singlet mechanisms appear to describe the p_T spectrum and cross-sections measured at Tevatron.
- However the a satisfactory description of polarization remains elusive.

- Other observables, double-charm production, production in p-Pb interactions etc.. have been proposed to solve the puzzle.
- With its high luminosity the production cross-section and possibly the polarization of states such as χ_c , χ_b might also become available at the LHC.
- The interest in the study of heavy flavour production processes is not limited to its theoretical value but it also:
 - provides excellent test of p-QCD and MC generators at new energies;
 - improves the understanding of heavy flavour background in many searches;
 - is an important test of the understanding of the detector

3/18

The LHCb Detector

Introduction

<ロ> <問> <問> < 同> < 同> 、

æ

Introduction

 J/ψ and $\Psi(2S)$

Double charmonium and open charm production

The LHCb experiment in a nutshell

- Good separation of primary and secondary vertices.
- Good momentum resolution \sim 0.5% with J/ ψ mass resolution of $\sim 13 \,\mathrm{MeV}/c^2$.
- Good muon identification: pion → muon misidentification ~ 0.7%.
- Low $p_{\rm T}$ triggers:
 - 1 μ : $p_{\rm T} > 1.8 \, {\rm GeV}/c$;
 - 2 μ : p_T > 0.56 GeV/*c* and p_T > 0.48 GeV/*c*.
- Rapidity region 2 < y < 4.5 complementary to the GPD.

 J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmonium and open charm production Conclusi

The Analysis Strategy

Introduction

- Define a fiducial volume in the LHCb acceptance: 2.0 < y < 4.5 and a maximum for p_T typically between 10 GeV/c and 20 GeV/c depending on the analysis.
- Reconstruct the quarkonium decay usually $\rightarrow \mu^+\mu^-$
- Remove background as much as possible with cuts on the usual kinematic and reconstruction variables.
- Require the decay products triggered the event.
- Subtract the remaining background.
- Apply per-event efficiency corrections, with efficiency determined as much as possible from data.
 - Geometric acceptance;
 - Reconstruction efficiency;
 - Muon identification efficiency.
 - Trigger efficiency;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double charmonium and open charm production

Prompt J/ψ and $\Psi(2S)$

 J/ψ and $\Psi(2S)$

- EPJ C71(2011) 1645
- $J/\psi \rightarrow \mu^+\mu^-$

4500 LHCb MeV/c

4000

3500

3000

2500 2000 1500

1000 Ξ.

> 3000 3100 3200 3300

● 5.2 pb⁻¹ from 2010 data

2.5 < v < 3.0

 $3 < p_{T} < 4 \text{ GeV}/c$

- $\Psi(2S) \rightarrow \mu^+ \mu^-$
- $\Psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- 36 pb⁻¹ from 2010 data

- M [MeV/c2] J/ψ and $\Psi(2S)$ produced from primary vertex and in seconday decays. ٠
- J/ψ also produced from feed-down from higher states.
- Secondary decays component removed exploiting pseudo propertime:

$$t_z = \frac{z_{J/\psi} - z_{PV} \times M_{J/\psi}}{\rho_z}$$

Prompt J/ψ and $\Psi(2S)$ 7 TeV results

 J/ψ and $\Psi(2S)$

- Dominant uncertainty is the unknown polarization affecting efficiency determination.
- Measurement performed in 3 cases assuming unpolarized, fully longitudinal and fully transversal polarization.

Double charmonium and open charm production

- $\sigma_{prompt}(J/\psi) = 10.52 \pm 0.04(stat) \pm 1.30(sys)^{+1.64}_{-2.20}(pol) \ \mu b \ EPJ \ C71(2011)$ 1645
- $\sigma_{prompt}(\Psi(2S)) = 1.44 \pm 0.01(stat) \pm 0.12(sys)^{+0.20}_{-0.40}(pol) \ \mu b \ \text{EPJ C72(2012)}_{2100}$
- Models describe well the transverse momentum distribution.

on J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmoniu

Prompt J/ψ 2.76 TeV results

- A sample of 0.071 pb⁻¹ collected in 2011 and used to measure the J/ψ cross-section JHEP 02 (2013) 041.
- Measurement carried out in the kinematic region $p_T < 12 \text{ GeV}/c$, 2 < y < 4.5.
- $\sigma_{inclusive}(J/\psi) = 5.6 \pm 0.1(stat) \pm 0.4(sys) \, \mu b$
- Uncertainty from unknown polarization estimated to be as large as an extra 20%.

 J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmonium and open charm production

Conclusions

Non-prompt J/ψ and $\Psi(2S)$

- The 7 TeV data analysis provides a measument of the cross-section of J/ ψ and $\Psi(2S)$ from B hadrons.
- Transverse momentum distributions in good agreement with FONLL predictions.

• J/ψ from B hadrons cross-section is measured at 2.76 TeV:

 $\sigma_{secondary}(J\!/\psi) = 400 \pm 35(\textit{stat}) \pm 49(\textit{sys})\textit{nb}$

Good agreement with theoretical prediction: 370⁺¹²⁰₋₁₁₀ nb JHEP 05 (2021) 137.

< ロ > < 同 > < 回 > < 回 >

 J/ψ and $\Psi(2S)$

 $\Upsilon(nS)$

$\Upsilon(nS)$ at 7 TeV

- $\Upsilon(1S), \Upsilon(2S)$ and $\Upsilon(3S)$ reconstructed in the $\mu^+\mu^-$ channel from a 25 pb⁻¹ sample EPJC 72 (2012) 2025.
- Cross-sections measured in the range: $p_{\rm T} <$ $15 \, \text{GeV}/c, \, 2 < y < 4.5.$
- Good agreement with theory predictions PRL 101 (2008) 152001.

- Analysis carried out on the 36 pb⁻¹ collected in 2010 PLB 707 (2012) 52-59.
- Cross section measured in the region $p_{\rm T} < 10 \, {\rm GeV}/c$, 2 < y < 4.5.
- First observation of double J/ψ production at hadronic collider.

• Cross-section measured to be $\sigma = 5.1 \pm 1.0 \pm 1.1$ nb.

• In agreement with theoretical prediction of $\sigma = 4$ nb PRD 84 (2011) 094023.

 J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmonium and open charm production

Conclusions

Double J/ψ + open charm

$$\label{eq:constructed} \begin{split} J/\psi \ + \ \text{one of:} \ D^0, \ D^+, \ D_s^+, \ \text{or} \ \Lambda_c \\ \text{reconstructed in } 355 \ \text{pb}^{-1} \ \text{collected in} \\ 2011 \ J\text{HEP} \ 02 \ (2012) \ 141. \end{split}$$

	Mode	Yield	
a)	$J/\psi D^0$	4875 ± 86	
b)	$J\!/\psi$ D ⁺	3323 ± 71	
C)	$J/\psi D_s^+$	$\textbf{328} \pm \textbf{22}$	
d)	$J/v \Lambda^+$	116 ± 14	

 $J/\psi + D^0$.

(nS) Double charmonium and open charm production

Conclusions

Open charm + open charm

 J/ψ and $\Psi(2S)$

Introduction

- Any pair of D⁰, D⁺, D⁺_s, Λ_c reconstructed in 355 pb⁻¹ collected in 2011 JHEP 02 (2012) 141.
- Both same sign and opposite sign considered.
- Opposite sign yields between $\sim 10^4$ and ~ 200 events.
- Same sign yields between $\sim 10^3$ and ~ 50 events.

•□ •D⁰ □ •D⁰

. ⊒ →

duction .

 J/ψ and $\Psi(2S)$ $\Upsilon(nS)$

Double charmonium and open charm production

Conclusions

Cross-section

Cross-sections compared to $gg \rightarrow J/\psi c\bar{c}$ calculations PRD 57 (1998) 4385, PRD 73 (2006) 074021 and EPJC 62 (2009).

Cross-section ratios compared to Double Parton Scattering expectations based on Tevatron results.

roduction J

 J/ψ and $\Psi(2S)$

∩(nS)

Double charmonium and open charm production

Conclusions

Transverse momentum spectrum

- The J/ψ p_T spectrum appears to be harder when accompanied by another charm.
- On the contrary the single open charm spectrum is harder than the double open charm one.

4 **A b b b b b b**

Introduction J/ψ and $\Psi(2S)$ $\Upsilon(nS)$ Double charmonium and open charm production

Conclusions

Azimuthal Angle Correlation

- The azimuthal angle difference between the J/ψ and the open charm or between two same sign open charm does not show a correlation.
- On the contrary the distribution for opposite sign OC+OC shows a peak at $\Delta \Phi \rightarrow 0$ suggesting a $g \rightarrow c\bar{c}$ splitting contribution.

A D N A B N A B N A B

- LHCb has successfully run during the first data taking collecting a wealth of $c\bar{c}$ and $b\bar{b}$ candidates.
- Many interesting results have already been produced including:
 - Cross-section measurements;
 - First observations;
 - First suggestions of the relevance of DPS.
- Work is currently ongoing to provide measurement of
 - Production cross-sections of other states;
 - Quarkonium polarization;
 - Differential cross-sections of double $J\!/\psi$ states.
- So don't miss this workshop in 2014!

< 回 > < 回 > < 回 >