QQQ singlet static potential and singlet static energy Nora Brambilla

based on the paper
N. Brambilla, F. Karbstein, A. Vairo

Phys.Rev.D87:074014 (2013) e-Print: arXiv:1301.3013 [hep-p

The QQbar singlet static potential and the QQbar singlet static energy are fundamental quantities calculated in perturbation theory and the lattice since the beginning of QCD

A proper definition of these quantities is given in nonrelativistic effective field theories

Potentials from pNRQCD $\left(r<\Lambda^{-1}\right)$

$\mathcal{L}_{\mathrm{pNRQCD}}=\sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}\left(\alpha_{\mathrm{s}}(m / \mu)\right) \times V\left(r \mu^{\prime}, r \mu\right) \times O_{n}\left(\mu^{\prime}, \lambda\right) r^{n}$

The static singlet QQbar potential and energy $\left(r<\Lambda^{-1}\right.$

The static singlet QQbar potential and energy $\left(r<\Lambda^{-1}\right.$

potential
$\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle=V_{s}(r, \mu)-i \frac{g^{2}}{N_{c}} V_{A}^{2} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V_{s}\right)}\langle\operatorname{Tr}(r \cdot E(t) r \cdot E(0))\rangle(\mu)+\ldots$ static energy ultrasoft contribution contributes from 3 loops

The static singlet

QQbar potential and energy $\left(r<\Lambda^{-}\right.$

$\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle=V_{s}(r, \mu)-i \frac{g^{2}}{N_{c}} V_{A}^{2} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V_{s}\right)}\langle\operatorname{Tr}(r \cdot E(t) r \cdot E(0))\rangle(\mu)+\ldots$ static energy ultrasoft contribution
contributes from 3 loops

* The μ dependence cancels between the two terms in the right-hand side:
$V_{s} \sim \ln r \mu, \ln ^{2} r \mu, \ldots$
ultrasoft contribution $\sim \ln \left(V_{o}-V_{s}\right) / \mu, \ln ^{2}\left(V_{o}-V_{s}\right) / \mu, \ldots \ln r \mu, \ln ^{2} r \mu, \ldots$

The static singlet

QQbar potential and energy $\left(r<\Lambda^{-1}\right.$

potential
$\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle=V_{s}(r, \mu)-i \frac{g^{2}}{N_{c}} V_{A}^{2} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V_{s}\right)}\langle\operatorname{Tr}(r \cdot E(t) r \cdot E(0))\rangle(\mu)+\ldots$ static energy ultrasoft contribution
contributes from 3 loops

* The μ dependence cancels between the two terms in the right-hand side:
$V_{s} \sim \ln r \mu, \ln ^{2} r \mu, \ldots$
ultrasoft contribution $\sim \ln \left(V_{o}-V_{s}\right) / \mu, \ln ^{2}\left(V_{o}-V_{s}\right) / \mu, \ldots \ln r \mu, \ln ^{2} r \mu, \ldots$
The static energy is a physical quantity and does not depend on the ultrasoft cutoff

Static singlet potential at $\mathrm{N} \wedge 4 \mathrm{LO}$

$$
\begin{aligned}
& \text { (THMH) } \\
& \text { in PT, i.e. } 1 / r \gg \Lambda_{\mathrm{QCD}} \\
& \begin{aligned}
= & -\frac{4}{3} \frac{\alpha_{\mathrm{s}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}+a_{2}\right. \\
& +\left(144 \pi^{2} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{3}
\end{aligned} \\
& \left.+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+48 \pi^{2} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{4}+\ldots\right] \\
& a_{4}^{L 2}=-144 \pi^{2} \beta_{0} \\
& a_{4}^{L}=432 \pi^{2}\left[a_{1}+2 \gamma_{E} \beta_{0}+n_{f}\left(-\frac{20}{27}+\frac{4}{9} \ln 2\right)+\frac{149}{9}-\frac{22}{3} \ln 2+\frac{4}{3} \pi^{2}\right]
\end{aligned}
$$

Static singlet potential at $\mathrm{N} \wedge 4 \mathrm{LO}$

$$
\begin{aligned}
& =-\frac{4}{3} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& +\left(144 \pi^{2} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+48 \pi^{2} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{4}+\ldots\right] \\
& a_{4}^{L 2}=-144 \pi^{2} \beta_{0} \\
& a_{4}^{L}=432 \pi^{2}\left[a_{1}+2 \gamma_{E} \beta_{0}+n_{f}\left(-\frac{20}{27}+\frac{4}{9} \ln 2\right)+\frac{149}{9}-\frac{22}{3} \ln 2+\frac{4}{3} \pi^{2}\right]
\end{aligned}
$$

- The logarithmic contribution at N^{3} LO may be extracted from the one-loop calculation of the ultrasoft contribution;
- the single logarithmic contribution at $\mathrm{N}^{4} \mathrm{LO}$ may be extracted from the two-loop calculation of the ultrasoft contribution.

Singlet static energy at $N \wedge 3 L L$ in comparison to lattice data (red points Necco sommer 2002)
Obtain the static energy: 1) subtract the renormalon 2) resum the logs in the energy scales ratio

Singlet static energy at $N \wedge 3 L L$ in comparison to lattice data (red points Necco sommer 2002)
Obtain the static energy: 1) subtract the renormalon 2) resum the logs in the energy scales ratio

- The lattice data are perfectly described from perturbation theory up to more than 0.2 fm
- Allows precise extraction of fundamental parameters of QCD

What is known about the QQQ potential/static energy and why it is interesting?

What is known about the $Q Q Q$ potential/static energy

 and why it is interesting?A richer color and geometrical structure

- Color degrees of freedom

$$
3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10
$$

What is known about the $Q Q Q$ potential/static energy

 and why it is interesting?
A richer color and geometrical structure

- Color degrees of freedom
$3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10$
- Two independent relative distances

$$
\begin{gathered}
\mathbf{r}_{1}=\mathbf{x}_{1}-\mathbf{x}_{2}, \quad \mathbf{r}_{2}=\mathbf{x}_{1}-\mathbf{x}_{3}, \quad \mathbf{r}_{3}=\mathbf{x}_{2}-\mathbf{x}_{3}, \\
\rho=\mathbf{r}_{1}, \quad \lambda=\frac{1}{2}\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right) .
\end{gathered}
$$

What is known about the $Q Q Q$ potential/static energy and why it is interesting?

A richer color and geometrical structure

- Color degrees of freedom

$$
3 \otimes 3 \otimes 3=1 \oplus 8 \oplus 8 \oplus 10
$$

- Two independent relative distances

$$
\mathbf{r}_{1}=\mathbf{x}_{1}-\mathbf{x}_{2}, \quad \mathbf{r}_{2}=\mathbf{x}_{1}-\mathbf{x}_{3}, \quad \mathbf{r}_{3}=\mathbf{x}_{2}-\mathbf{x}_{3}
$$

$$
\rho=\mathbf{r}_{1}, \quad \lambda=\frac{1}{2}\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right) .
$$

- We define L the sum of the distances of the three quarks from the Torricelli point, which has minimum distance from the quarks.

A richer dynamical structure

A richer dynamical structure

$Q Q Q$ static energies on the lattice


```
- Takahashi Matsufuru Nemoto Suganuma PRL 86 (2001) 18
    PRD 65 (2002) 114509, Takahashi Suganuma PRD 70 (2004) 074506
```


A richer dynamical structure

$Q Q Q$ static energies on the lattice

the transition region spectacularly leads from a two body Coulomb interaction to a three body one, depending on one length only

EFT for static-static-static quarks

EFT for static-static-static quarks

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$

EFT for static-static-static quarks

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q

EFT for static-static-static quarks

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for QQQ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{S 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

EFT for static-static-static quarks

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for $Q Q Q$ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{s 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

In our choice, O^{S} and O^{A} are respectively symmetric and antisymmetric for exchanges of the quarks located in \mathbf{x}_{1} and \mathbf{x}_{2}.
Since octets mix already at LO, it is useful to define: $O^{a}=\binom{O^{A a}}{O^{S a}}$.

[^0]
EFT for static-static-static quarks

- Consider $r_{q} \ll \Lambda_{\mathrm{QCD}}^{-1}$
- Construct pNRQCD for QQQ by integrating out the hard scale m and the soft scale r_q
- The (weakly coupled) EFT for QQQ baryons contains:

$$
\begin{aligned}
& \text { q, gluons, }(Q Q Q)_{1}=S,(Q Q Q)_{8}=\left(O^{A 1}, \ldots, O^{A 8}\right) \\
& (Q Q Q)_{8}=\left(O^{S 1}, \ldots, O^{s 8}\right) \text { and }(Q Q Q)_{10}=\left(\Delta^{1}, \ldots, \Delta^{10}\right)
\end{aligned}
$$

In our choice, O^{S} and O^{A} are respectively symmetric and antisymmetric for exchanges of the quarks located in x_{1} and x_{2}.
Since octets mix already at LO, it is useful to define: $O^{a}=\binom{O^{A a}}{O^{S a}}$.

- The EFT Lagrangian reads $\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum_{f=1}^{n_{f}} \bar{q}_{f} i \not D q_{f}+\delta \mathcal{L}^{(0)}+\cdots$ dots stand for h.o. terms in the multipole expansion.

[^1]
pNRQCD Lagrangian

> order in $\left(\frac{1}{m}\right.$, multipole $)$ expansion $\downarrow \downarrow$
> $\mathcal{L}_{\mathrm{pNRQCD}}^{Q Q Q}=\mathcal{L}_{\mathrm{pNRQCD}}^{(0,0)}+\mathcal{L}_{\mathrm{pNRQCD}}^{(0,1)}+\ldots$,

pNRQCD Lagrangian

$$
\begin{gathered}
\text { order in (} \frac{1}{m}, \text { multipole) expansion } \\
\downarrow \downarrow \\
\mathcal{L}_{\mathrm{pNRQCD}}^{Q Q Q}=\mathcal{L}_{\mathrm{pNRQCD}}^{(0,0)}+\mathcal{L}_{\mathrm{pNRQCD}}^{(0,1)}+\ldots,
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}}^{(0,0)}=\int \mathrm{d}^{3} \rho \mathrm{~d}^{3} \lambda & \left\{S^{\dagger}\left(\mathrm{i}_{0}-V^{S}\right) S+\Delta^{\dagger}\left(\mathrm{i} D_{0}-V^{\Delta}\right) \Delta\right. \\
+ & O^{A \dagger}\left(\mathrm{i} D_{0}-V_{A}^{o}\right) O^{A}+O^{S \dagger}\left(\mathrm{i} D_{0}-V_{S}^{o}\right) O^{S} \\
& \left.+O^{A \dagger}\left(-V_{A S}^{o}\right) O^{S}+O^{S \dagger}\left(-V_{A S}^{o}\right) O^{A}\right\}
\end{aligned}
$$

pNRQCD Lagrangian

$$
\begin{gathered}
\text { order in }\left(\frac{1}{m}\right. \text {, multipole) expansion } \\
\downarrow \downarrow \\
\mathcal{L}_{\mathrm{pNRQCD}}^{Q Q Q}=\mathcal{L}_{\mathrm{pNRQCD}}^{(0,0)}+\mathcal{L}_{\mathrm{pNRQCD}}^{(0,1)}+\ldots,
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}}^{(0,0)}=\int \mathrm{d}^{3} \rho \mathrm{~d}^{3} \lambda & \left\{S^{\dagger}\left(\mathrm{i} \partial_{0}-V^{S}\right) S+\Delta^{\dagger}\left(\mathrm{i} D_{0}-V^{\Delta}\right) \Delta\right. \\
+ & O^{A \dagger}\left(\mathrm{i} D_{0}-V_{A}^{o}\right) O^{A}+O^{S \dagger}\left(\mathrm{i} D_{0}-V_{S}^{o}\right) O^{S} \\
& \left.+O^{A \dagger}\left(-V_{A S}^{o}\right) O^{S}+O^{S \dagger}\left(-V_{A S}^{o}\right) O^{A}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\mathrm{pNRQCD}}^{(0,1)}=\int \mathrm{d}^{3} \rho \mathrm{~d}^{3} \lambda & \left\{V_{S \rho \cdot \mathrm{EO}}^{(0,1)} \frac{g}{2 \sqrt{2}}\left[S^{\dagger} \boldsymbol{\rho} \cdot \mathrm{E}^{a} O^{S a}+O^{S a \dagger} \boldsymbol{\rho} \cdot \mathrm{E}^{a} S\right]\right. \\
& \left.-V_{S \lambda \cdot E O^{A}}^{(0,1)} \frac{g}{\sqrt{6}}\left[S^{\dagger} \lambda \cdot \mathrm{E}^{a} O^{A a}+O^{A a \dagger} \lambda \cdot \mathrm{E}^{a} S\right]+\ldots\right\}
\end{aligned}
$$

Matching the QQQ potential

Matching the QQQ potential

the potential is a sum of two-and three-body

$$
V(\mathfrak{r})=\sum_{q=1}^{s} V_{2}\left(\mathbf{r}_{q}\right)+V_{3}(\mathfrak{r})
$$

Matching the QQQ potential

the potential is a sum of two-and three-body

$$
V(\mathfrak{r})=\sum_{q=1}^{s} V_{2}\left(\mathbf{r}_{q}\right)+V_{3}(\mathfrak{r})
$$

the three body part is the part that vanishes when putting one of the quarks at infinite distance from the other two

Matching the QQQ potential

up to two

$$
\begin{aligned}
& \text { loops: } \quad V_{\mathcal{C}}(\mathfrak{r})=\lim _{T_{W} \rightarrow \infty} \frac{i}{T_{W}} \ln \frac{\langle 0| \mathcal{C}^{u} W \mathcal{C}^{v \dagger}|0\rangle}{\mathcal{C}_{m n o}^{u} \mathcal{C}_{m n o}^{v \dagger}},
\end{aligned}
$$

loops:

the potential is a sum of two-and three-body

$$
V(\mathfrak{r})=\sum_{q=1}^{\infty} V_{2}\left(\mathbf{r}_{q}\right)+V_{3}(\mathfrak{r})
$$

the three body part is the part that vanishes when putting one of the quarks at infinite distance from the other two

At leading order:

$$
\begin{aligned}
& V_{S}^{(0)}=-\frac{2}{3} \alpha_{\mathrm{s}}\left(\frac{1}{\left|\boldsymbol{r}_{1}\right|}+\frac{1}{\left|\boldsymbol{r}_{2}\right|}+\frac{1}{\left|\boldsymbol{r}_{3}\right|}\right)+\ldots \\
& V_{O}^{(0)}=\alpha_{\mathrm{S}}\left[\frac{1}{\left|\boldsymbol{r}_{1}\right|}\left(\begin{array}{cc}
-\frac{2}{3} & 0 \\
0 & \frac{1}{3}
\end{array}\right)+\frac{1}{\left|\boldsymbol{r}_{2}\right|}\left(\begin{array}{cc}
\frac{1}{12} & -\frac{\sqrt{3}}{4} \\
-\frac{\sqrt{3}}{4} & -\frac{5}{12}
\end{array}\right)+\frac{1}{\left|\boldsymbol{r}_{3}\right|}\left(\begin{array}{cc}
\frac{1}{12} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & -\frac{5}{12}
\end{array}\right)\right]+\ldots \\
& V_{\Delta}^{(0)}=\frac{\alpha_{\mathrm{s}}}{3}\left(\frac{1}{\left|\boldsymbol{r}_{1}\right|}+\frac{1}{\left|\boldsymbol{r}_{2}\right|}+\frac{1}{\left|\boldsymbol{r}_{3}\right|}\right)+\ldots
\end{aligned}
$$

$Q Q Q$ lattice potentials in different color representations

- Hübner Karsch Kaczmarek Vogt PRD 77 (2008) 074504
- At short distances, one recovers the zero temperature potentials.
- Singlet, octet and decuplet potentials in an equilateral configuration:

$$
V_{S}^{(0)}=-2 \frac{\alpha_{\mathrm{s}}}{r}+\ldots, \quad V_{O}^{(0)}=-\frac{\alpha_{\mathrm{s}}}{2 r}+\ldots, \quad V_{\Delta}^{(0)}=\frac{\alpha_{\mathrm{s}}}{r}+\ldots
$$

QQQ potential at NLO

$$
V_{\mathcal{C}}^{1}(\mathfrak{r})=\sum_{i=1}^{3} f_{q}^{0}(\mathcal{C}) \frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{\left|\mathbf{r}_{q}\right|}\left[1+\frac{\alpha_{\overline{M S}}\left(\mathbf{r}_{q}\right)}{4 \pi}\left(2 \beta_{0} \gamma+a_{1}\right)\right]
$$

same colour factor as the
$a_{1}=\frac{31}{9} C_{A}-\frac{20}{9} T_{F} n_{f}$
c = singlet, $L O$ one octet,
decuplet
at NLO QQbar and QQQ potential only differ for the overall colour representation but the effective coupling of the potential is the same

$$
\alpha_{V}\left(1 /\left|\mathbf{r}_{q}\right|\right)=\alpha_{\mathrm{s}}\left(1 /\left|\mathbf{r}_{q}\right|\right)\left[1+\frac{\alpha_{\mathrm{s}}}{4 \pi}\left(2 \beta_{0} \gamma_{E}+a_{1}\right)\right]
$$

QQQ singlet static potential at NNLO

$$
\left.\left.\begin{array}{rl}
V_{S}^{(0)}=- & \frac{2}{3} \sum_{q=1}^{3} \frac{\alpha_{\mathrm{s}}\left(1 /\left|\boldsymbol{r}_{q}\right|\right)}{\left|\boldsymbol{r}_{q}\right|}\left\{1+\frac{\alpha_{\mathrm{S}}\left(1 /\left|\boldsymbol{r}_{q}\right|\right)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
& +\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2}[66 \zeta(3)
\end{array}\right)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18}\right)
$$

QQQ singlet static potential at NNLO

$$
\begin{aligned}
V_{S}^{(0)}=- & \frac{2}{3} \sum_{q=1}^{3} \frac{\alpha_{\mathrm{S}}\left(1 /\left|\boldsymbol{r}_{q}\right|\right)}{\left|\boldsymbol{r}_{q}\right|}\left\{1+\frac{\alpha_{\mathrm{s}}\left(1 /\left|\boldsymbol{r}_{q}\right|\right)}{4 \pi}\left[\frac{31}{3}+22 \gamma_{E}-\left(\frac{10}{9}+\frac{4}{3} \gamma_{E}\right) n_{f}\right]\right. \\
& +\left(\frac{\alpha_{\mathrm{s}}}{4 \pi}\right)^{2}\left[66 \zeta(3)+484 \gamma_{E}^{2}+\frac{1976}{3} \gamma_{E}+\frac{3}{4} \pi^{4}+\frac{121}{3} \pi^{2}+\frac{4343}{18}\right. \\
& -\left(\frac{52}{3} \zeta(3)+\frac{176}{3} \gamma_{E}^{2}+\frac{916}{9} \gamma_{E}+\frac{44}{9} \pi^{2}+\frac{1229}{27}\right) n_{f} \\
& \left.\left.+\left(\frac{16}{9} \gamma_{E}^{2}+\frac{80}{27} \gamma_{E}+\frac{4}{27} \pi^{2}+\frac{100}{81}\right) n_{f}^{2}\right]\right\} \\
& +V_{S}^{3 \mathrm{body}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
v(\boldsymbol{\rho}, \boldsymbol{\lambda})= & 16 \pi \hat{\boldsymbol{\rho}} \cdot \hat{\boldsymbol{\lambda}} \int_{0}^{1} d x \int_{0}^{1} d y \frac{1}{R}\left[\left(1-\frac{M^{2}}{R^{2}}\right) \arctan \frac{R}{M}+\frac{M}{R}\right] \\
& +16 \pi \hat{\boldsymbol{\rho}}^{i} \hat{\boldsymbol{\lambda}}^{j} \int_{0}^{1} d x \int_{0}^{1} d y \frac{\hat{\boldsymbol{R}}^{i} \hat{\boldsymbol{R}}^{j}}{R}\left[\left(1+3 \frac{M^{2}}{R^{2}}\right) \arctan \frac{R}{M}-3 \frac{M}{R}\right]
\end{aligned}
$$

with $\boldsymbol{R}=x \boldsymbol{\rho}-y \boldsymbol{\lambda}, R=|\boldsymbol{R}|$ and $M=|\boldsymbol{\rho}| \sqrt{x(1-x)}+|\boldsymbol{\lambda}| \sqrt{y(1-y)}$

Relevant diagrams in Coulomb gauge:

QQQ singlet static energy at order $O\left(\alpha_{s}^{4} \ln \alpha_{s}\right)$ QQQ singlet static potential at order $O\left(\alpha_{s}^{4} \ln \mu\right)$

$$
E^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=V^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)+\delta_{\mathrm{US}}^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)
$$

it is sufficient to calculate the leading divergence in the ultrasoft correction: a one loop calculation in the EFT

QQQ singlet static energy at order $O\left(\alpha_{s}^{4} \ln \alpha_{s}\right)$ QQQ singlet static potential at order $O\left(\alpha_{s}^{4} \ln \mu\right)$

$$
E^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=V^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)+\delta_{\mathrm{US}}^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)
$$

it is sufficient to calculate the leading divergence in the ultrasoft correction: a one loop calculation in the EFT

	$=\theta(T) \mathrm{e}^{-i V^{s} T}$	(singlet propagator),
$b \quad a$	$=\theta(T) \mathrm{e}^{-i V_{S}^{o} T} \delta_{a b}$	(symmetric octet propagator),
$b \quad a$	$=\theta(T) \mathrm{e}^{-i V_{A}^{o} T} \delta_{a b}$	(antisymmetric octet propagator),
$\stackrel{b}{\square}$	$\stackrel{b}{\underline{a}} \quad=-i V_{A S}^{o} \delta_{a b}$	(octet mixing potential),

$$
=i g \frac{1}{2 \sqrt{2}} \boldsymbol{\rho} \cdot \mathbf{E}^{a},
$$

singlet couples differently to symmetric or antisymmetric octets

QQQ singlet static potential at order $O\left(\alpha_{s}^{4} \ln \mu\right)$

The biggest difference with respect to
QQbar is that the singlet couples to two distinct octet fields and that octet fields mix
the mixing of the octet fields is of the same order of the octet energies : it must be considered to all order when computing physical octet to octet propagators
the resummation of the octet mixing potential gives rise to three different sets of resummed octet propagators

Resummed octet propagators

(1) a resummed octet propagator, G_{S}^{o}, that describes the propagation from a symmetric initial state to a symmetric final state:

$$
\begin{aligned}
& \bar{\square}+=\underline{x}+\underset{x}{x}+\cdots \\
& =\Longrightarrow \sum_{n=0}^{\infty}(\Varangle x)^{n}=\overline{=} \frac{1}{1-(\searrow x)} \text {; }
\end{aligned}
$$

(2) a resummed octet propagator, G_{A}^{o}, that describes the propagation from an antisymmetric initial state to an antisymmetric final state:

$$
\bar{\square}=\sum_{n=0}^{\infty}(\searrow)^{n}=\overline{\underline{x}} \frac{1}{1-(\searrow \Longleftarrow}
$$

(3) a resummed octet propagator, $G_{A S}^{o}$, that describes the propagation from a symmetric initial state to an antisymmetric final state or vice versa:

$$
\bar{\Longrightarrow}=\Longrightarrow(=0) \text {. }
$$

$$
\begin{aligned}
-i\left[G_{S}^{o}(E)\right]_{a b}= & \frac{i \delta_{a b}\left(E-V_{A}^{o}\right)}{\left(E-V_{S}^{o}+i \epsilon\right)\left(E-V_{A}^{o}+i \epsilon\right)-\left(V_{A S}^{o}\right)^{2}},-i\left[G_{A}^{o}(E)\right]_{a b}=\frac{i d_{a b}\left(E^{\prime}-V_{S}^{o}\right)}{\left(E-V_{S}^{o}+i \epsilon\right)\left(E-V_{A}^{o}+i \epsilon\right)-\left(V_{A S}^{o}\right)^{2}}, \\
& -i\left[G_{A S}^{o}(E)\right]_{a b}=\frac{i \delta_{a b} V_{A S}^{o}}{\left(E-V_{S}^{o}+i \epsilon\right)\left(E-V_{A}^{o}+i \epsilon\right)-\left(V_{A S}^{o}\right)^{2}},
\end{aligned}
$$

Calculation of the ultrasoft contribution up to α_{s}^{4}

$$
\begin{aligned}
& \delta_{\mathrm{US}}^{s}=-i g^{2}\left(\frac{1}{2 \sqrt{2}}\right)^{2} \int_{0}^{\infty} \mathrm{d} t \frac{1}{E_{1}-E_{2}}\left[\left(E_{1}-V_{A}^{o}\right) \mathrm{e}^{-i t\left(E_{1}-V^{s}\right)}\right. \\
& \left.-\left(E_{2}-V_{A}^{o}\right) \mathrm{e}^{-i t\left(E_{2}-V^{s}\right)}\right]\left\langle\boldsymbol{\rho} \cdot \mathbf{E}^{a}(t) \boldsymbol{\rho} \cdot \mathbf{E}^{a}(0)\right\rangle \\
& -i g^{2}\left(\frac{1}{\sqrt{6}}\right)^{2} \int_{0}^{\infty} \mathrm{d} t \frac{1}{E_{1}-E_{2}}\left[\left(E_{1}-V_{S}^{o}\right) \mathrm{e}^{-i t\left(E_{1}-V^{s}\right)}\right. \\
& \left.-\left(E_{2}-V_{S}^{o}\right) \mathrm{e}^{-i t\left(E_{2}-V^{s}\right)}\right]\left\langle\boldsymbol{\lambda} \cdot \mathbf{E}^{a}(t) \boldsymbol{\lambda} \cdot \mathbf{E}^{a}(0)\right\rangle \\
& +2 i g^{2} \frac{1}{2 \sqrt{2}} \frac{1}{\sqrt{6}} \int_{0}^{\infty} \mathrm{d} t \frac{V_{A S}^{o}}{E_{1}-E_{2}}\left[\mathrm{e}^{-i t\left(E_{1}-V^{s}\right)}-\mathrm{e}^{-i t\left(E_{2}-V^{s}\right)}\right]\left\langle\boldsymbol{\rho} \cdot \mathbf{E}^{a}(t) \boldsymbol{\lambda} \cdot \mathbf{E}^{a}(0)\right\rangle,
\end{aligned}
$$

$$
E_{1,2}=\frac{V_{A}^{o}+V_{S}^{o}}{2} \pm \sqrt{\left(\frac{V_{A}^{o}-V_{S}^{o}}{2}\right)^{2}+\left(V_{A S}^{o}\right)^{2}}-i \epsilon
$$

Calculation of the ultrasoft contribution up to α_{s}^{4}

$$
\begin{aligned}
\delta_{\mathrm{US}}^{s}=\frac{4}{3} \frac{\alpha_{\mathrm{s}}}{\pi} \frac{1}{E_{1}-E_{2}} & {\left[\left(\frac{|\rho|^{2}}{4}\left(E_{1}-V_{A}^{o}\right)+\frac{|\lambda|^{2}}{3}\left(E_{1}-V_{S}^{o}\right)-\frac{\rho \cdot \lambda}{\sqrt{3}} V_{A S}^{o}\right)\left(E_{1}-V^{s}\right)^{3}\right.} \\
& \times\left(\frac{1}{\varepsilon}-\gamma_{E}-\ln \frac{\left(E_{1}-V^{s}\right)^{2}}{\pi \mu^{2}}+\frac{5}{3}\right) \\
& -\left(\frac{|\rho|^{2}}{4}\left(E_{2}-V_{A}^{o}\right)+\frac{|\lambda|^{2}}{3}\left(E_{2}-V_{S}^{o}\right)-\frac{\rho \cdot \lambda}{\sqrt{3}} V_{A S}^{o}\right)\left(E_{2}-V^{s}\right)^{3} \\
& \left.\times\left(\frac{1}{\varepsilon}-\gamma_{E}-\ln \frac{\left(E_{2}-V^{s}\right)^{2}}{\pi \mu^{2}}+\frac{5}{3}\right)\right]
\end{aligned}
$$

QQQ singlet static potential at order $O\left(\alpha_{s}^{4} \ln \mu\right)$
$E^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=V^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)+\delta_{\mathrm{US}}^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)$,

The divergence and the $\alpha_{s}^{4} \ln \mu$ in δ_{US}^{s} must cancel against a divergence and a term $\alpha_{s}^{4} \ln \mu$ in the singlet static potential

QQQ singlet static potential at order $O\left(\alpha_{s}^{4} \ln \mu\right)$

$$
\begin{aligned}
& V^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3} ; \mu\right)=V_{\mathrm{NNLO}}^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \\
&-\frac{\alpha_{\mathrm{s}}^{4}}{3 \pi} \ln \mu\left[\left(\mathbf{r}_{1}^{2}+\frac{\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)^{2}}{3}\right)\right.\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}-\frac{1}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\left|\mathbf{r}_{3}\right|}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right) \\
& \times\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right) \\
&+\left(\mathbf{r}_{1}^{2}-\frac{\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)^{2}}{3}\right)\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}+\frac{5}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\left|\mathbf{r}_{3}\right|}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right) \\
& \times\left(\frac{1}{\left|\mathbf{r}_{1}\right|}-\frac{1}{2\left|\mathbf{r}_{2}\right|}-\frac{1}{2\left|\mathbf{r}_{3}\right|}\right) \\
&+\mathbf{r}_{1} \cdot\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}\right.\left.+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}+\frac{5}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\left|\mathbf{r}_{3}\right|}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right) \\
&\left.\times\left(\frac{1}{\left|\mathbf{r}_{2}\right|}-\frac{1}{\left|\mathbf{r}_{3}\right|}\right)\right]
\end{aligned}
$$

the new term proportional to $\alpha_{s}^{4} \ln \mu$ that we have added is a genuine three body potential

QQQ singlet static energy at order $O\left(\alpha_{s}^{4} \ln \alpha_{s}\right)$

 summing the potential and the US contribution$$
\begin{aligned}
& E^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)= V_{\mathrm{NNLO}}^{s}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right) \\
&-\frac{\alpha_{\mathrm{s}}^{4}}{3 \pi} \ln \alpha_{\mathrm{s}}\left[\left(\mathbf{r}_{1}^{2}+\frac{\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)^{2}}{3}\right)\right.\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}-\frac{1}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\mid \mathbf{r}_{:}}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right. \\
& \times\left(\frac{1}{\left|\mathbf{r}_{1}\right|}+\frac{1}{\left|\mathbf{r}_{2}\right|}+\frac{1}{\left|\mathbf{r}_{3}\right|}\right) \\
&+\left(\mathbf{r}_{1}^{2}-\frac{\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)^{2}}{3}\right)\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}+\frac{5}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\mid \mathbf{1}}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right. \\
& \times\left(\frac{1}{\left|\mathbf{r}_{1}\right|}-\frac{1}{2\left|\mathbf{r}_{2}\right|}-\frac{1}{2\left|\mathbf{r}_{3}\right|}\right) \\
&+\mathbf{r}_{1} \cdot\left(\mathbf{r}_{2}+\mathbf{r}_{3}\right)\left(\frac{1}{\left|\mathbf{r}_{1}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{2}\right|^{2}}+\frac{1}{\left|\mathbf{r}_{3}\right|^{2}}+\frac{5}{4} \frac{\left|\mathbf{r}_{1}\right|+\left|\mathbf{r}_{2}\right|+\left|\mathbf{r}_{3}\right|}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|\left|\mathbf{r}_{3}\right|}\right) \\
&\left.\times\left(\frac{1}{\left|\mathbf{r}_{2}\right|}-\frac{1}{\left|\mathbf{r}_{3}\right|}\right)\right]
\end{aligned}
$$

The logarithm of α_{s} signals that an ultraviolet divergence from the US scale has canceled against an infrared divergence from the soft scale.

Renormalization Group improvement of the singlet static potential in an equilateral geometry

The US logs that start appearing in the potential at $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ may be resummed using RG equation. These are a set of eqs. that describe the scale dependence of the static potentials in different color representations: they follow by requiring that the static energies are independent of the renormalization scheme

The potentials in different color
representations mix under renormalization

Renormalization Group improvement of the singlet static potential in an equilateral geometry

The US logs that start appearing in the potential at $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ may be resummed using RG equation. These are a set of eqs. that describe the scale dependence of the static potentials in different color representations: they follow by requiring that the static energies are independent of the renormalization scheme

The potentials in different color representations mix under

$$
\mu \mathrm{d} V^{s} / \mathrm{d} \mu=-\mu \mathrm{d} \delta_{\mathrm{US}}^{s} / \mathrm{d} \mu
$$ renormalization

Renormalization Group improvement of the singlet static potential in an equilateral geometry

The US logs that start appearing in the potential at $\mathrm{N}^{\wedge} 3 \mathrm{LO}$ may be resummed using RG equation. These are a set of eqs. that describe
the scale dependence of the static potentials in different color representations: they follow by requiring that the static energies are independent of the renormalization scheme

The potentials in different color representations mix under

$$
\mu \mathrm{d} V^{s} / \mathrm{d} \mu=-\mu \mathrm{d} \delta_{\mathrm{US}}^{s} / \mathrm{d} \mu
$$ renormalization

$$
\begin{aligned}
& \mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{s}=-\frac{8}{3} \frac{\alpha_{s}}{\pi}\left\{\left[\frac{V_{S}^{o}-V_{A}^{o}}{2}\left(\frac{|\rho|^{2}}{4}-\frac{|\lambda|^{2}}{3}\right)-V_{A S}^{o} \frac{\rho \cdot \lambda}{\sqrt{3}}\right]\right. \\
& \times {\left[3\left(\frac{V_{S}^{o}+V_{A}^{o}}{2}-V^{s}\right)^{2}+\frac{\left(V_{S}^{o}-V_{A}^{o}\right)^{2}}{4}+\left(V_{A S}^{o}\right)^{2}\right] }
\end{aligned}
$$

$$
\left.+\left(\frac{V_{S}^{o}+V_{A}^{o}}{2}-V^{\mathrm{L}}\right)\left(\frac{|\rho|^{2}}{4}+\frac{|\lambda|^{2}}{3}\right) \times\left[\left(\frac{V_{S}^{o}+V_{A}^{o}}{2}-V^{s}\right)^{2}+3 \frac{\left(V_{S}^{o}-V_{A}^{o}\right)^{2}}{4}+3\left(V_{A S}^{o}\right)^{2}\right]\right\}
$$

Renormalization Group improvement of the singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled equations. There is however a difference with respect to the QQbar case. In the QQbar case there is only one length r, in the QQQ case we have more than one length. For a general three-body geometry logs corrections in the US scale can be as important as finite logs involving ratios among the different lengths. The calculation of this finite terms requires the calculation of the QQQ Wilson loop. however these logs are not important if the length scales are similar.

Renormalization Group improvement of the singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled equations. There is however a difference with respect to the QQbar case. In the QQbar case there is only one length r, in the QQQ case we have more than one length. For a general three-body geometry logs corrections in the US scale can be as important as finite logs involving ratios among the different lengths. The calculation of this finite terms requires the calculation of the QQQ Wilson loop. however these logs are not important if the length scales are similar.

We work in the equilateral geometry $\left|\mathbf{r}_{1}\right|=\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r$.

Renormalization Group improvement of the singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled equations. There is however a difference with respect to the QQbar case. In the QQbar case there is only one length r, in the QQQ case we have more than one length. For a general three-body geometry logs corrections in the US scale can be as important as finite logs involving ratios among the different lengths. The calculation of this finite terms requires the calculation of the QQQ Wilson loop. however these logs are not important if the length scales are similar.

We work in the equilateral geometry $\left|\mathbf{r}_{1}\right|=\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r$.

- $V_{S}^{o}=V_{A}^{o}=V^{o}$. octets do not mix

Renormalization Group improvement of the singlet static potential in an equilateral geometry

We can solve singlet, octet, decuplet potential RG coupled equations. There is however a difference with respect to the QQbar case. In the QQbar case there is only one length r, in the QQQ case we have more than one length. For a general three-body geometry logs corrections in the US scale can be as important as finite logs involving ratios among the different lengths. The calculation of this
finite terms requires the calculation of the QQQ Wilson loop. however these logs are not important if the length scales are similar.

We work in the equilateral geometry $\left|\mathbf{r}_{1}\right|=\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r$.

- $V_{S}^{o}=V_{A}^{o}=V^{o}$. octets do not mix

We calculate US contribution for the decuplet and the octet and obtain the corresponding $R G$ equations

Renormalization Group improvement of the singlet static potential in an equilateral geometry

Renormalization Group improvement of the singlet static potential in an equilateral geometry

$$
\left\{\begin{array}{l}
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{s}=-\frac{4}{3 \pi} \alpha_{\mathrm{s}} r^{2}\left(V^{o}-V^{s}\right)^{3}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{o}=\frac{1}{12 \pi} \alpha_{\mathrm{s}} r^{2}\left[\left(V^{o}-V^{s}\right)^{3}+5\left(V^{o}-V^{d}\right)^{3}\right]+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{d}=-\frac{2}{3 \pi} \alpha_{\mathrm{s}} r^{2}\left(V^{o}-V^{d}\right)^{3}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \alpha_{\mathrm{s}}=\alpha_{\mathrm{s}} \beta\left(\alpha_{\mathrm{s}}\right)
\end{array}\right.
$$

RG coupled eqs

Renormalization Group improvement of the singlet static potential in an equilateral geometry

$$
V^{s}(r ; \mu)=V_{\mathrm{NNLO}}^{s}(r)-9 \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)}
$$

solutions of the
equations

$$
\begin{aligned}
V^{o}(r ; \mu) & =V_{\mathrm{NNLO}}^{o}(r)-\frac{9}{4} \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)} \\
V^{d}(r ; \mu) & =V_{\mathrm{NNLO}}^{d}(r)+\frac{9}{2} \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\mu \frac{d}{d \mu} V^{s}=-\frac{4}{3 \pi} \alpha_{\mathrm{s}} r^{2}\left(V^{o}-V^{s}\right)^{3}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{o}=\frac{1}{12 \pi} \alpha_{\mathrm{s}} r^{2}\left[\left(V^{o}-V^{s}\right)^{3}+5\left(V^{o}-V^{d}\right)^{3}\right]+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{d}{d \mu} V^{d}=-\frac{2}{3 \pi} \alpha_{\mathrm{s}} r^{2}\left(V^{o}-V^{d}\right)^{3}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} \alpha_{\mathrm{s}}=\alpha_{\mathrm{s}} \beta\left(\alpha_{\mathrm{s}}\right)
\end{array}\right.
$$

Renormalization Group improvement of the singlet static potential in an equilateral geometry

$$
V^{s}(r ; \mu)=V_{\mathrm{NNLO}}^{s}(r)-9 \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)},
$$

solutions of the
equations

$$
\begin{aligned}
& V^{o}(r ; \mu)=V_{\mathrm{NNLO}}^{o}(r)-\frac{9}{4} \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)} \\
& V^{d}(r ; \mu)=V_{\mathrm{NNLO}}^{d}(r)+\frac{9}{2} \frac{\alpha_{\mathrm{s}}^{3}(1 / r)}{\beta_{0} r} \ln \frac{\alpha_{\mathrm{s}}(1 / r)}{\alpha_{\mathrm{s}}(\mu)}
\end{aligned}
$$

provides the singlet static potentials at NNLL accuracy in the equilateral
geometry

$$
\left\{\begin{array}{l}
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{s}=-\frac{4}{3 \pi} \alpha_{\mathrm{s}} r^{2}\left(V^{o}-V^{s}\right)^{3}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \\
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} V^{o}=\frac{1}{12 \pi} \alpha_{\mathrm{s}} r^{2}\left[\left(V^{o}-V^{s}\right)^{3}+5\left(V^{o}-V^{d}\right)^{3}\right]+\mathcal{O}\left(\alpha_{\mathrm{s}}^{5}\right) \quad \text { RG coupled } \\
\mu \frac{\mathrm{d}}{} V^{d}=-2
\end{array}\right.
$$

Conclusions

We have computed the $Q Q Q$ singlet static potential at order
$\alpha_{s}^{4} \ln \mu$ and the singlet static energy at order $\alpha_{s}^{4} \ln \alpha_{s}$
These are the most accurate determinations of the $Q Q Q$ singlet static and energy in perturbative $Q C D$

The new contribution to the potential is a three body interaction and together with the three body
interaction at two loop order may provide new insight on the emergence of a long range three body interaction governed by only one fundamental length

In the special situation where the quarks are located at the corners of an equilateral triangle we have solved the RG eqs at NNLL accuracy obtaining the expression for the QQQ singlet static potential at NNLL accuracy

Backup

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

$$
0.6
$$

weak dependence on theta of the 3body potential

Let us consider some simple geometries

Isosceles geometry in a plane

$$
\left|\mathbf{r}_{2}\right|=\left|\mathbf{r}_{3}\right|=r \text { and } \hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}=\cos \theta .
$$

$$
c_{H}(\theta)
$$

$$
V_{\mathcal{H} \mathcal{C}}^{\mathrm{tot}}(r, \theta)=f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3} \frac{c_{\mathcal{H}}(\theta)}{r} .
$$

attractive contribution to the potential

may indicate the onset of a smooth transition towards the long distance Y shaped three body potential seen in the lattice data?

Let us consider some simple geometries

$\theta=\pi / 3$: planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

Let us consider some simple geometries

$\theta=\pi / 3$: planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

We can compare the relative magnitude of the three-body contribution to the tree level potential. For the singlet

$$
\frac{V_{\mathcal{H} s}^{\mathrm{tot}}(r)}{V_{s}^{(0)}(r)}=\frac{c_{\mathcal{H}}(\pi / 3)}{4} \alpha_{\mathrm{s}}^{2}(1 / r) \approx \frac{\alpha_{\mathrm{s}}^{2}(1 / r)}{2.90}
$$

Let us consider some simple geometries

$\theta=\pi / 3:$ planar equilateral geometry
In the equilateral case, we have $c_{\mathcal{H}}(\pi / 3) \approx 1.377$.

We can compare the relative magnitude of the three-body contribution to the tree level potential. For the singlet

$$
\frac{V_{\mathcal{H} s}^{\mathrm{tot}}(r)}{V_{s}^{(0)}(r)}=\frac{c_{\mathcal{H}}(\pi / 3)}{4} \alpha_{\mathrm{s}}^{2}(1 / r) \approx \frac{\alpha_{\mathrm{s}}^{2}(1 / r)}{2.90}
$$

using α_{s} at one loop, $V_{\mathcal{H} s}^{\mathrm{tot}}(r)$ may become as large as one sixth of the tree-level Coulomb potential in the region around 0.3 fm , where, at least in the $Q \bar{Q}$ case, perturbation theory śtill h'ỏláš'

Let us consider some simple geometries
\qquad
.
\square

Let us consider some simple geometries
Generic geometry
In the most general geometry the three body potential depends on two coordinates, we may choose one of them
to be L_min, leaving the other not specified

Let us consider some simple geometries

In the most general geometry the three body potential depends on two coordinates, we may choose one of them to be L_min, leaving the other not specified
(B.1) Planar lattice geometry with two fixed quarks

In Fig 10, we plot the three-body potential obtained by placing the three quarks in a plane (x, y), fixing the position of the first quark in $(0,0)$, the second one in $(1,0)$ and moving the third one in the lattice $\left(0.5+0.125 n_{x}, 0.125 n_{y}\right)$ with $n_{x} \in\{0,1, \ldots, 20\}$ and $n_{y} \in\{0,1, \ldots, 24\}$. The plot clearly shows the dependence on the geometry at fixed L, however, the dependence

FIG. 10: The normalized three-body potential, $V_{\mathcal{H C}}^{\mathrm{tot}}(L, \ldots) /\left(-f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3}\right)$, plotted as function of L

In the most general geometry the three body potential depends on two coordinates, we may choose one of them to be L_min, leaving the other not specified

Three-dimensional lattice geometry with the three quarks moving along the axes
28] T. T. Takahashi and H. Suganuma, Phys. Rev. D70, 074506 (2004), hep-lat/0409105.
In the lattice calculation of Ref. [28], the three quarks were located along the axes of a three-dimensional lattice, namely at $\left(n_{x}, 0,0\right),\left(0, n_{y}, 0\right)$ and $\left(0,0, n_{z}\right)$, with $n_{x} \in\{0,1, \ldots, 6\}$ and $n_{y}, n_{z} \in\{1, \ldots, 6\}$. For the sake of comparison, we consider the same geometry and plot the corresponding three-body potential in Fig. 11. The plot shows a weak dependence on the geometry: much weaker than in the two-body case, but also somewhat weaker than in the geometry considered in (B.1).

FIG. 11: The normalized three-body potential, $V_{\mathcal{H C}}^{\mathrm{tot}}(L, \ldots) /\left(-f_{\mathcal{H}}(\mathcal{C}) \alpha_{\mathrm{s}}^{3}\right)$, plotted as function of L

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

hep-lat/0209062
equilateral geometry,
d_qq = qq distance

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

$j \underbrace{\text { Yconfiguration }}_{k}$
hep-lat/0209062
equilateral geometry,
d_qq = qq distance

The precise behaviour of the $Q Q Q$ potential is still object of investigation on the lattice

hep-lat/0209062 equilateral geometry, d_qq = qq distance

[^0]: N. B. , T. Roesch, A. Vairo 2005, N.B. J. Ghiglieri, A. Vairo 2010

[^1]: N. B. , T. Roesch, A. Vairo 2005, N.B. J. Ghiglieri, A. Vairo 2010

