

Remarks on hadronic molecules

Christoph Hanhart

Forschungszentrum Jülich

non-rel. QM

Weinberg PR 130 (1963) 776

Expand in terms of non-interacting quark and meson states

$$|\Psi\rangle = \begin{pmatrix} \lambda |\psi_0\rangle \\ \chi(\mathbf{p}) |h_1 h_2\rangle \end{pmatrix},$$

here $|\psi_0\rangle$ = elementary state and $|h_1h_2\rangle$ = two-hadron cont., then λ^2 equals probability to find the bare state in the physical state $\rightarrow \lambda^2$ is the quantity of interest!

After some algebra we get for the residue at the pole

$$g_{\text{eff}}^2 = 2(1-\lambda^2)\sqrt{\epsilon/m} \le 2\sqrt{\epsilon/m}$$

For bound state low E amplitude fixed in *hh* channel!

Picture not changed by far away thresholdBaru et al. PLB586 (2004) 53Equivalent to, e.g.,Morgan NPA543 (1992) 63; Törnqvist PRD51 (1995) 5312

Remarks

- model independent only for s-waves
- corrections scale as $\sqrt{mE_B}R$, with R=range of forces \rightarrow model independent for near threshold states only
- one finds

$$a = g_{\text{eff}} = \mathcal{O}(R) \simeq \left(2\frac{1-\lambda^2}{2-\lambda^2}\right) \frac{-1}{\sqrt{mE_B}}$$

- applicable only, if there are no other small scales in the problem C.H. et al., 'Interplay of quark and meson degrees of freedom' (2010,2011)
- Mass splittings from mother states: $D_{s1}(2460)/D_s(2317)$ as D^*K/DK molecules $M(D_{s1}(2460)) - M(D_s(2317)) = M(D^*) - M(D)$

Remarks on hadronic molecules - p. 5/10

Fix $f(\Lambda)$ via fixing $\partial E_B / \partial m_\pi = (\mathbf{0}..-2) \times 10^{-2} \Lambda$ independent

Lattice will teach us m_{π} dependence of \bar{D}^*D potential!

our results in conflict with Wang and Wang, arXiv:1304.0846v1

Thus ...

- For *s*-wave bound-states near a threshold: Amount of molecular admixture of the state is encoded in effective coupling constant to the continuum
- Spin symmetry allows to predict new states, since spin symmetry violation equal for molecules and mother states

Exception: very near threshold states like Z_b 's - symmetry violation enhanced due to strong final state interaction (c.f. NN scat. in 1S_0 : $(a_{pn} - a_{nn})/a_{NN} \sim 25\%$) Cleven et al. , Eur.Phys.J. A47 (2011) 120

What to do in case of resonances (second sheet poles)?

- \rightarrow Relation between ϵ and $g_{\rm eff}$ lost, but still $g_{\rm eff}$ large
- \rightarrow for hadron-hadron states: all transitions through loops \longrightarrow relations between different reactions

Examples: Z_b and Z'_b

Cleven et al. PRD 87 (2013) 074006

if, e.g., (e) dominates (analogously for (a) dominance)

$$\frac{\Gamma[Z'_b \to h_b(mP)\pi]}{\Gamma[Z_b \to h_b(mP)\pi]} \simeq \frac{\mathrm{PS}'_m}{\mathrm{PS}_m} \frac{\Gamma(Z'^+_b \to B^{*+}\bar{B}^{*0})}{\Gamma(Z^+_b \to B^+\bar{B}^{*0} + B^0\bar{B}^{*+})},$$

with $\Gamma(Z_b^{\prime +} \to B^{*+}\bar{B}^{*0})/\Gamma(Z_b^+ \to B^+\bar{B}^0 + B^0\bar{B}^{*+}) \simeq 1.6$

other terms supp. for $\chi_b(m)$ & $h_b(m)$ final states m = 2, 3, then

even $\Gamma(Z_b^{(\prime)0} \to \chi_{bJ}(mP)\gamma) / \Gamma(Z_b^{(\prime)0} \to h_b(mP)\pi^0)$ predicted

 $Z_{c}(3900)$

- So far: given the Z_c , how can we test, if it is a D^*D -resonance? Questions:
- \rightarrow Why is Z_c seen in Y and not in B decays? see Q. Zhao's talk (NEXT!)
- \rightarrow if it comes from non-perturbative D^*D interactions: What is the dynamics that drives it above threshold?

Conventional potential scattering: no resonances in S-waves!

Is the scattering potential energy dependent?

c.f. C.H., Pelaez, Rios, PRL 100(2008) 152001

- Can the inelastic channels move the pole?
- ▷ or is there a tetra-quark component?

I do not know $\dots \rightarrow$ Round table

Summary

Amongst the various options for exotic states,

molecules near threshold are special

since the dynamics in controlled by the two-hadron cut

- \rightarrow for bound states: the coupling to the two-hadron state is fixed
- \rightarrow mass differences related to those of mother particles e.g.: Z_b at $\overline{B}B^*$ threshold; Z'_b at \overline{B}^*B^* threshold;
- → Transitions to two-hadron channel large (c.f. tetra-quarks!) e.g.: Z_b/Z'_b decay predominantly to $\bar{B}^{(*)}B^*$
- → in general: seemingly unrelated reactions get related (if higher order contributions are suppressed)

Molecular hypothesis can be tested experimentally!