"Sapienza" Università di Roma – INFN sez. Roma 1

$Z_c(3900)$ as a tetraquark

A. Pilloni

QWG2013, IHEP, Beijing – April 26th, 2013

R. Faccini, L. Maiani, F. Piccinini, AP, A.D. Polosa, V.Riquer arXiv:1303.6857

Outline

- Charged $Z_c(3900)$
- Tetraquark hypothesis
- Decay channels
- Other models
- Conclusions

Charged $Z_c(3900)$

Found in $Y(4260) \rightarrow Z_c^{\pm}(3900) \pi^{\mp} \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$ Exotic charged charmonium-like state!

BESIII, arXiv:1303.5949

 $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}$ $\Gamma = 46 \pm 10 \pm 20 \text{ MeV}$ Belle, arXiv:1304.0121

 $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}$ $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

Quantum numbers

From the decay $Y \rightarrow Z_c \pi \rightarrow J/\psi \pi \pi$ we know $I^G J^P = 1^+?^?$

For a S-wave decay, $I^{G}J^{PC} = 1^{+}1^{+-}$ For a P-wave decay, $I^{G}J^{PC} = 1^{+}(0,1,2)^{--}$

C is defined for the neutral Z_c^0

Quantum numbers

From the decay $Y \rightarrow Z_c \pi \rightarrow J/\psi \pi \pi$ we know $I^G J^P = 1^+?^?$

For a S-wave decay, $I^{G}J^{PC} = 1^{+}1^{+-}$ For a P-wave decay, $I^{G}J^{PC} = 1^{+}(0,1,2)^{--}$

Similarly to X(3872) with $J^{PC} = 1^{++}$, a signature $J^P = 1^+$ is favored by models

C is defined for the neutral Z_c^0

One of the models for the X(3872) is a compact diquark-antidiquark bound state

$$[cq]_{S=0}[\bar{c}\bar{q}]_{S=1}+h.c.$$

Maiani et al. PRD71 014028

We can evaluate mass spectrum in a constituent quark model

$$H = -2\sum_{i < j} \kappa_{ij} \, \overrightarrow{S_i} \cdot \overrightarrow{S_j} \, \frac{\lambda_i^a}{2} \frac{\lambda_j^a}{2}$$

 $\kappa_{\bar{q}Q}$ from meson spectrum:

 $\pi, \rho, D, D^*, \eta_c, J/\psi$

 $\kappa_{c\bar{q}} = 17.5 \text{ MeV}$ $\kappa_{c\bar{c}} = 15.0 \text{ MeV}$ $\kappa_{q\bar{q}} = 77.5 \text{ MeV}$ κ_{qQ} from baryon spectrum:

 $Λ_c, Σ_c, p, Δ^+$

 $\kappa_{cq} = 13.5 \text{ MeV}$

But the mass of constituent diquark is unknown We impose the 1^{++} state to be the X(3872)and get $m_q = 1933$ MeV

We can combine S=0 and S=1 diquarks to get 3 vector states: $1^{++} \quad \frac{1}{\sqrt{2}}(|0,1\rangle + |1,0\rangle)$ $1^{+-} \quad \frac{1}{\sqrt{2}}(|0,1\rangle - |1,0\rangle)$ $1^{+-} \quad |1,1\rangle$ mix

 1^{+-} state at 3882 MeV compatible with $Z_c(3900)!$

Prevision for other states:

- Neutral $I^G = 1^+$ partner $\sim 3900 \text{ MeV}$
- Neutral $I^G = 0^-$ partner $\sim 3900 \text{ MeV}$
- Charged/neutral 1⁺⁻ states
 ~ 3755 MeV

Look for a $Z'_c(3760)$ about ~ 100 MeV below $Z_c(3900)$

Faccini, Maiani, Piccinini, AP, Polosa, Riquer arXiv:1303.6857

Is there room for a lighter resonance?

χ^2 /DOF=41/65, *CL* = 99.0%

Is there room for a lighter resonance?

χ^2 /DOF=41/65, *CL* = 99.0%

Is there room for a lighter resonance?

χ^2 /DOF=41/65, *CL* = 99.0%

Just a hint, but... could it be the $Z'_c(3760)$?

$Z_c^0(3900)$ at CLEO?

A reanalysis of CLEO data shows a 3σ neutral resonance in $\psi(4160) \rightarrow \pi^0 Z_c^0 \rightarrow J/\psi \pi^0 \pi^0$

Two questions:

- What can $Z_c(3900)$ decay into?
- Why is $Z_c(3900)$ much broader than X(3872)?

Two questions:

- What can $Z_c(3900)$ decay into?
- Why is $Z_c(3900)$ much broader than X(3872)?
- $J/\psi \pi^+$

Two questions:

- What can $Z_c(3900)$ decay into?
- Why is $Z_c(3900)$ much broader than X(3872)?
- $J/\psi \pi^+$
- $\psi(2S)\pi^+$
- $D^+ \overline{D^{*0}}$, $D^{*+} \overline{D^0} \sim 4 \text{ MeV}$
- $\eta_c \rho^+$
- $h_c \pi^+$ in P-wave
- Radiative decays

We suppose $g_{DD^*X(3872)} = g_{DD^*Z(3900)}$

Two questions:

- What can $Z_c(3900)$ decay into?
- Why is $Z_c(3900)$ much broader than X(3872)?
- $J/\psi \pi^+ \sim 29 \text{ MeV}$
- $\psi(2S)\pi^+ \sim 6 \text{ MeV}$
- $D^+ \overline{D^{*0}}$, $D^{*+} \overline{D^0} \sim 4 \text{ MeV}$
- $\eta_c \rho^+ \sim 19 \text{ MeV}$
- $h_c \pi^+$ in P-wave
- Radiative decays

No grounds for other couplings We only suppose

 $g = M_{Z_c}$

Some agreement with QCD sum rules Dias *et al.* arXiv:1304.6433

$\Gamma \sim 60$ MeV, agrees with experimental value

Hadro-charmonium

Voloshin arXiv:1304.0380

A $c\bar{c}$ state surrounded by light matter

Decay into $\eta_c \rho$ forbidden by HQSS

A light $Z'_{c}(3785)$ expected with $I^{G}J^{PC} = 1^{-}0^{++}$ (not visible in $J/\psi \pi$ channel)

Molecule

 DD^* loosely bound molecule 1- π exchange attractive in $I^C = 1^-$ channel, although less than in $I^C = 0^+$ (X(3872)) Tornqvist Z.Phys. C61 525-537

A molecule decays mostly into its constituents (long range decay)

Decays into charmonium + light mesons suppressed by 1/a (short range decay) Braaten *et al.* PRD69, 074005

e.g. $BR(X(3872) \rightarrow DD^*) \sim 70\%$, $BR(X(3872) \rightarrow J/\psi \rho) \sim 5\%$

Molecule

Wang et al. arXiv:1303.6355

Expected with $BR(Z_c \rightarrow DD^*) \sim 70-80\%$ But we estimated $\Gamma(Z_c \rightarrow DD^*) \sim 4$ MeV, How to reach $\Gamma = 40$ MeV?

A light $Z'_c(3760)$ expected with $I^G J^{PC} = 1^{-}0^{++}$ A heavy $Z''_c(4020)$ expected at D^*D^* threshold

Voloshin PRD 84, 031502

Molecule

 $Z_c^0(3900)$ could violate isospin just like X(3872)A Y(4260) $\rightarrow Z_c^0 \pi^0 \rightarrow J/\psi \eta \pi^0$ could occur If so, it cannot be accomodated into molecular picture: In X(3872) isospin violation is due to $\Delta = M(D^+D^{-*}) - M(D^0D^{0*}) \sim 8 \text{ MeV}$ Hanhart *et al.* PRD85 011501

 Z_c^0 is above both thresholds, and $\Delta \ll \Gamma$

In molecular picture Z_c^0 should be a pure isovector

Conclusions

A $Z_c(3900)$ with $I^G J^{PC} = 1^+ 1^{+-}$ is compatible with different models (tetraquark, molecule, hadro- $c\bar{c}$)

Conclusions

A $Z_c(3900)$ with $I^G J^{PC} = 1^+ 1^{+-}$ is compatible with different models (tetraquark, molecule, hadro- $c\bar{c}$)

To establish its nature, we need:

- Quantum numbers
- Decay channels $(DD^*, J/\psi \eta, \eta_c \rho)$
- Looking for a lighter partner 3750-3850 MeV in both $G = \pm$ channels
- Looking for a heavier partner at ~ 4020 MeV

Thank you

BACKUP

Strong couplings

How do we evaluate $g_{DD^*X(3872)}$?

$$g_{DD^*X(3872)}^2 = BR(X \to DD^*) \Gamma_X \left(\frac{p^*}{8\pi M_x^2} \overline{|M(X \to DD^*)|^2}\right)^{-1}$$

But if $M_X < M_D + M_{D^*}$ the decay momentum p^* is undefined

We average over a random set $(M_X)_i$, distributed as a Breit-Wigner, centered at $M_X = 3872$ MeV and with a width $\Gamma_X = 1.2$ MeV respecting the kinematical limits

$$M_D + M_{D^*} < (M_X)_i < M_B - M_K$$

We get $g_{DD^*X(3872)} = 2.5 \text{ GeV}$

Strong couplings

The matrix element can be evaluated in an effective theory

$$\langle D(p) D^*(\eta, q) | X(\lambda, P) \rangle = g_{DD^*X} \eta \cdot \lambda$$

$$\frac{1}{3} \sum_{\text{pol}} |\langle D(p) D^*(\eta, q) | X(\lambda, P) \rangle|^2 = \frac{1}{3} g_{DD^*X}^2 \left(3 + \frac{p^{*2}}{M_X^2} \right)$$

The D-wave componenent is negligible with respect to the S-wave one

We get
$$g_{DD^*X(3872)} = 2.5 \text{ GeV}$$

Strong couplings

What about other couplings?

We cannot relate $g_{X\psi\rho}$ to $g_{Z_c\psi\pi}$ (no chiral symmetry or HQSS)

But we are talking about S-wave decays and we need couplings with the dimension of a mass

The main mass scale is the mass of the $Z_c(3900)$ So we estimate

 $g \sim M_{Z_c} \sim 3900 \; {\rm MeV}$

 $Z'_c \rightarrow \chi_{c1} \gamma?$

Belle arXiv:1304.3975

$M = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}$ $\Gamma < 24 \text{ MeV}$

Proposed a 2⁻⁻ signature (identified as $\psi_2(1D)$), but could be 1⁺⁻ if the decay is in P-wave

Could be the neutral partner of Z'_c ?