

Outline

Motivations

```
Theoretical models predicted for existence of a light
   CP-odd Higgs boson (A^0 \equiv a_1) including Next-to-Minimal
   Supersymmetric Model (NMSSM)
  NMSSM contains (updating MSSM)
3 CP-even, 2 CP-odd, and 2 charged Higgs
\Box Light means m_{A^0} < \text{mass of } \Upsilon(4S).
  m_{A^0} < twice the mass of the b-quark
  Branching fractions of A^0 depend on its mass
  and tan \beta and cos\theta_A (parameter in NMSSM)
  Light CP-odd Higgs can be directly produced in the radiative decays of
heavy quarkonium states like \Upsilon(nS) (n = 1, 2, 3)
```

NMSSM Higgs PRD 76, 051105 (2007): Dermisek, Gunion, McElrath

The residual background is suppressed by 8 kinematic and angular variables **Peaking contributions** • $\Upsilon(3S) \rightarrow \gamma \; \chi_{bJ}(2P)(J=0,1,2)$ $\hookrightarrow \chi_{bJ}(2P) \to \gamma \Upsilon(nS)(n=1,2)$ $\hookrightarrow \Upsilon(nS) o au^+ au^-$ 90% C.L. Upper Limit $B(\Upsilon(3S) \rightarrow \gamma A^0) \times B(A^0 \rightarrow \tau \tau) \times 10^{-10}$ (a) 0.1-0.1 (b) Total uncertainty - · - · Statistical uncertainty only 10-4 10^{-5} 10-6 10 6 8 m_{Λ^0} (GeV/c²) Search A^0 in E_γ spectrum over a range of $4.03 < m_{A^0} < 10.10~{
m GeV}/c^2$ $\mathcal{B}(\Upsilon(3S) o \gamma A^0) imes \mathcal{B}(A^0 o au^+ au^-) < (1.5 - 16) imes 10^{-5}$ at 90% C.L.

 $\Upsilon(2S,3S) o \gamma A^0$, $A^0 o \mu^+ \mu^-$ Previous BABAR Results \Box Search for A^0 scalar boson in the radiative decays of $\Upsilon(2S)$ and $\Upsilon(3S)$ Assuming no invisible (neutralino) decays ${\cal B}(A^0 o \mu^+ \mu^-) pprox$ sizable at low $m_{A^0} < 2 m_ au$ Require one γ and 2 oppositely charged tracks at least one of which is identified as a muon $\Box E_{\gamma} > 200$ MeV (CM), while allowing few additional γ with energy lower than 200 MeV Signal MC simulation Use kinematic fit of $\gamma \mu^+ \mu^-$ system, \square including the beam energy and decay vertex constraints

 $\Upsilon(2S,3S) o \gamma A^0$, $A^0 o \mu^+\mu^-$, PRL 103, 081803 (2009) BABAR

 \Box Search for A^0 as a function of mass m_{A^0}

Scan range $0.212 < m_{A^0} < 9.3 \text{ GeV}$ (a) $\mathcal{B}(\Upsilon(2S) \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ (b) $\mathcal{B}(\Upsilon(3S) \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ (c) $f_{\Upsilon}^2 \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ $\mathcal{B}(\Upsilon(nS) \to \gamma A^0)$ are related to the effective Yukawa coupling f_{Υ} of bound *b* quark to A^0 $\frac{\mathcal{B}(\Upsilon(nS) \to \gamma A^0)}{\mathcal{B}(\Upsilon(nS) \to \ell^+ \ell^-)} = \frac{f_{\Upsilon}^2}{2\pi\alpha} (1 - \frac{m_{A^0}^2}{m_{\Upsilon}^2(\pi S)})$

 \exists Shaded area is excluded from the search around the J/ψ and $\psi(2S)$ resonances

□ We do not observed any significant signal, set at 90% CL

 \Box Most significant fluctuation using $\Upsilon(2S,3S) \sim 3.24\sigma$ at $m_{A^0} = 3.88 \; {
m GeV}/c^2$

$$\Upsilon(2S,3S) o \pi^+\pi^- \Upsilon(1S), \Upsilon(1S) o \gamma A^0$$
, $A^0 o \mu^+\mu^-$

Summary

BABAR previous results:

 $\Diamond \Upsilon(3S)
ightarrow \gamma A^0$, $A^0
ightarrow au^+ au^-$ PRL 103, 181801 (2009)

 $\mathcal{B}(\Upsilon(3S) o \gamma A^0) imes \mathcal{B}(A^0 o au^+ au^-) < (1.5 - 16) imes 10^{-5}$ at 90% C.L.

 $\diamond \Upsilon(2S,3S)
ightarrow \gamma A^0$, $A^0
ightarrow \mu^+\mu^-$ PRL 103, 081803 (2009)

Most significant fluctuation using $\Upsilon(2S,3S) \sim 3.24\sigma$ at $m_{A^0} = 3.88 \text{ GeV}/c^2$

```
BABAR new results:
```

 $\diamondsuit \Upsilon(2S,3S) o \pi^+\pi^- \Upsilon(1S)$, $\Upsilon(1S) o \gamma A^0$, $A^0 o \mu^+\mu^-$

PRD 87, 031102 (2013)

 $f_{\Upsilon}^2 imes \mathcal{B}(A^0 o \mu^+ \mu^-) < (0.29 - 40) imes 10^{-6}$ at 90% C.L.

□ Important input to rule out much of the parameter space

allowed for the light Higgs

BABAR Data: $\Upsilon(nS)$ (Backup Slide)

Final BABAR Data

- A BAR
- BaBar data sets:
 - 122 x 10⁶ Υ(3S) decays
 - 99 x 10⁶ Υ(2S) decays
 - "offpeak" samples of 1.4fb⁻¹ and 2.4fb⁻¹ collected ~30 MeV below the Υ(2S) and Υ(3S)
 - 79 fb⁻¹ "continuum background" samples of Υ(4S) with similar detector conditions

BABAR Detector (Backup Slide)

