Cold Nuclear Effects in J/ ψ Production

SUBATECH, Nantes, France

Quarkonium 2013 Beijing, China, April 23

Talk based on

Arleo, S.P., Sami, PRD 83 (2011) 114036

Arleo, S.P., PRL 109 (2012) 122301

Arleo, S.P., JHEP 1303 (2013) 122

Arleo, Kolevatov, S.P., Rustamova, arXiv:1304.0901

introduction

• strong nuclear suppression in p-A

- understanding $R_{pA} = \frac{1}{A} \cdot \frac{\sigma_{pA}}{\sigma_{pp}}$ is crucial
 - disentangle various *cold* nuclear effects
 - prerequisite for hadron suppression in A-A
- focus here on quarkonium production
 - intrinsic hard scale $M = M_{Q\bar{Q}} \sim 3 \,\mathrm{GeV}$
 - rich data for nuclear suppression

main message of this talk:

 J/ψ nuclear suppression in p–A arises dominantly from parton energy loss through nucleus

J/ψ suppression: qualitative features

J/ψ suppression at large *E*

• another hint: J/ψ suppression does not scale in x_2

M. Leitch

 \Rightarrow shadowing (nPDFs) should be a minor effect

- remaining effects
 - parton energy loss
 - k_{\perp} -broadening (saturation)

$\Delta E_{\mathrm{J}/\psi}$: a brief history

Gavin-Milana 92: ad hoc $\Delta E \propto E \Rightarrow$ fits $R_{\rm pW}^{{\rm J}/\psi}$...

0.6

Brodsky-Hoyer 93: bound on energy loss?

• B-H consider asymptotic charge in QED model:

assume $\theta_s|_{pA} = \theta_s|_{pp}$ and formation time $t_f \gg L$

 $\Rightarrow \hat{\text{find no medium-induced radiation and conclude:}} t_f \sim \frac{\omega}{k_{\perp}^2} \lesssim L \Rightarrow \Delta E \lesssim L \langle k_{\perp}^2 \rangle \qquad \text{(B-H bound)}$

 \rightarrow seems to rule out Gavin-Milana assumption $\Delta E \propto E$

- B-H argument fails in QED when $\theta_s|_{pA} > \theta_s|_{pp}$
- argument fails in QCD:

 $\Delta E \propto E$ due to charge color rotation (see: Gunion Bertsch 82)

- assumption: $Q\bar{Q}$ remains color octet and compact $(r_{\perp} \sim 1/M)$ during time $t_{octet} \gg t_{hard}, L$ (true in CEM, COM... but should be more general) $\Rightarrow \omega \frac{dI}{d\omega}\Big|_{ind} \sim$ radiation off "asymptotic color charge" $\Delta E_{ind} \sim N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2}}{M_{\perp}} E \propto E \sqrt{L/M^2}$
 - arises from $t_{hard}, L \ll t_f \ll t_{octet}$
 - depends on L via $\Delta q_{\perp}^2 = \hat{q} L \ll M$

model for J/ ψ suppression

Arleo, S.P., JHEP 1303 (2013) 122

• medium-induced $\Delta E \sim \alpha_s \frac{\Delta q_\perp}{M_\perp} E$ is *higher-twist*.

collinear-safe, process dependent, suppressed by $1/M_{\perp}$

• use standard way to implement 'higher-twist' loss

$$\frac{1}{A} \frac{\mathrm{d}\sigma_{pA}^{\psi}}{\mathrm{d}E} (E) = \int_{0}^{\varepsilon_{max}} d\varepsilon P(\varepsilon) \frac{\mathrm{d}\sigma_{pp}^{\psi}}{\mathrm{d}E} (E+\varepsilon)$$
$$\left(\frac{\mathrm{d}\sigma_{pp}^{\psi}}{\mathrm{d}x_{\mathrm{F}}} \text{ taken from p-p data}\right)$$

model depends on single parameter \hat{q} (via $\Delta q_{\perp}^2 = \hat{q} L$)

$$\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x)$$
Baier et al 97
$$xG(x) \sim x^{-0.3}$$
Golec-Biernat Wusthoff 98
$$\hat{q} = \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3}$$
has smooth *x*-dependence

 J/ψ suppression from fixed-target to collider energies

 \hat{q}_0 fixed from W/Be E866 J/ ψ suppression data...

1 0.8 $R_{W/Be}(x_{\text{F}})$ 0.6 0.4 $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$ (fit) 0.2 E866 $\sqrt{s} = 38.7$ GeV 0 -0.2 0 0.6 0.8 0.2 0.4 X_F

...and used to predict $R_{\rm pA}^{{\rm J}/\psi}$ for other A, \sqrt{s}

E866 Fe/Be

A-dependence well reproduced

• RHIC, LHC: $x_2 \ll 0.01 \Rightarrow$ nPDF (shadowing) / saturation effects become sizeable • choice (i): use various nPDF sets (EPS09, DSSZ) • choice (ii): saturation $Q_s^2 = \hat{q}(x) L$ Mueller 99, Baier 03 $R_{pA}^{\text{sat}}(x, A) \simeq \frac{a}{(b+Q_s^2(x,L))^{\alpha}}$ Fujii, Gelis, Venugopalan 06

'CGC effect' accounts for broadening of $c\bar{c}$ relative p_{\perp} , an effect previously proposed Benesh, Qiu, Vary 94

- from fixed-target to RHIC, $x_{\rm F}$ -dependence of $R_{pA}^{{\rm J}/\psi}$ can be described by *parton energy loss* alone
 - adding saturation to ΔE improves agreement with RHIC data
 - saturation/nPDF effects alone cannot explain fixed-target data

p_{\perp} -dependence

Arleo, Kolevatov, S.P., Rustamova, arXiv:1304.0901 • energy loss + p_{\perp} -broadening of pointlike $c\bar{c}$:

 $\frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pA}}^{\psi}}{\mathrm{d}E\,\mathrm{d}^{2}\vec{p}_{\perp}} = \int_{\varphi} \int_{\varepsilon} \mathcal{P}(\varepsilon) \,\frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\psi}}{\mathrm{d}E\,\mathrm{d}^{2}\vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp}\right)$

no free parameter: Δp_{\perp} induces ΔE

energy loss \longrightarrow normalization

RHIC (d-Au) centrality dependence

predictions for $R_{pA}^{J/\psi}$ at LHC (p-Pb)

minimum bias

centrality dependence

summary

- parton ($c\bar{c}$) broadening + induced loss $\Delta E \propto E$ is a dominant effect in p-A J/ ψ suppression explains shape of $R_{pA}^{J/\psi}$, both in x_F and p_{\perp} from fixed-target to RHIC energies (RHIC, LHC: saturation/nPDFs may bring a 10-20 % effect in normalization)
- parametric dependence of ΔE (and dI/dω) arises from true PQCD calculation
 ΔE ~ higher-twist effect, previously overlooked
 → should have implications on other p-A processes: open charm, light hadron (p⊥ ≥ 1 GeV)

BACK-UP SLIDES

• J/ψ nuclear suppression depends on projectile

• no nuclear suppression in $\gamma^* A \rightarrow J/\psi + X$ $R_{in}(Sn/C) = 1.13 \pm 0.08$ NMC Amaudruz et al. 92

parametrization of p-p cross section

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}^{\psi}}{\mathrm{d}y\,\mathrm{d}^{2}\vec{p}_{\perp}} = \mathcal{N} \times \left(\frac{p_{0}^{2}}{p_{0}^{2} + p_{\perp}^{2}}\right)^{m} \times \left(1 - \frac{2M_{\perp}}{\sqrt{s}}\cosh y\right)^{n}$$

$x_{\rm F}$ -dependence

p_{\perp} -dependence

S. Peigné