#### Quarkonium 2013

The 9th International Workshop on Heavy Quarkonium

April 22- 26, 2013, IHEP, Beijing

# Recent results on quarkonium production at RHIC-STAR

#### Zebo Tang (for the STAR Collaboration) Department of Modern Physics University of Science and Technology of China (USTC)



# Quarkonium as a sensitive probe of QGP

#### Hot Nuclear Matter effects:

- Color-screening
- Recombination of uncorrelated c and cbar





- Nuclear absorption
- PDF modification in nucleus [(anti)-shadowing]
- Cronin effect
- Gluon saturation



J/ψ

low x

J/w

Biorken

high x

o-movers

# Low- $p_T J/\psi$ suppression at RHIC



Mid-rapidity: Similar suppression as SPS

#### Forward rapidity:

More suppression than in mid-rapidity

**Two Puzzles!!** 

# **Color-screening vs. Regeneration**



- Theoretical calculations describe  $J/\psi$  suppression at SPS and RHIC top energy.
- Interplay of CNM, Color-screening and Regeneration effects. → Complicated!
- Vary the relative contributions and test? and/or Isolate some effect?

# **STAR Detector for Quarkonium**



Installing a large area muon detector (Muon Telescope Detector) at mid-rapidity. It significantly improves (compare to dielectron channel):

• Trigger capability

- Mass resolution
- Signal-to-background ratio

### $J/\psi$ at RHIC low energy



# $J/\psi$ suppression at RHIC low energy



p+p references for 39 and 62 GeV: CEM R. Nelson, R. Vogt et al, PRC87, 014908 (2013)

Theoretical curves: Xingbo Zhao, Ralf Rapp PRC82, 064905 (2010)

Similar suppression from 39 - 200 GeV

Consistent with theoretical calculation.

# $J/\psi$ suppression at RHIC low energy



Strong suppression at low-p<sub>T</sub>.

No significant beam-energy dependence.

## **Forward/mid-rapidity**



No significant  $p_T$  dependence at all of the beam energies. No significant beam energy dependence.

# High- $p_T J/\psi$ provides a cleaner probe

- Regeneration only affect low p<sub>T</sub>
- •Nuclear absorption with lifetime effect (CNM effects)  $R_{AA} \sim 0.4$  at low  $p_T$ , increase to unity at 5 GeV/c



# High- $p_T J/\psi$ provides a cleaner probe

•  $R_{AA}$  increase to unity at  $p_T>4$  GeV/c in d+Au collisions CNM effects are negligible at high- $p_T$ 



PHENIX, arXiv:1204.0777

# High- $p_T J/\psi$ signals at STAR



# **p**<sub>T</sub> spectra



Y.-Q. Ma, K. Wang, and K.-T. Chao, Phys. Rev. D84, 114001 (2011), and private communication

M. Bedjidian et al., hep-ph/0311048, and R. Vogt private communication

Tsallis Blast-Wave model: ZBT *et al.*, CPL 30, 031201 (2013); JPG 37, 085104 (2010)

#### $\mathbf{R}_{\mathbf{A}\mathbf{A}}$ vs. $\mathbf{p}_{\mathbf{T}}$



STAR CuCu: PRC80, 014922(R) PHENIX: PRL98, 232301

Yunpeng Liu, Zhen Qu, Nu Xu and Pengfei Zhuang, PLB 678:72 (2009) and private comminication

Xingbo Zhao and Ralf Rapp, PRC 82,064905(2010) and private communication

STAR, PLB 722, 55 (2013)

First high- $p_T J/\psi$  suppression measurement in Au+Au collisions at RHIC Increase from low  $p_T$  to high  $p_T$ Consistent with unity at high  $p_T$  in (semi-) peripheral collisions

More suppression in central than in peripheral even at high  $p_T$ 

#### **R**<sub>AA</sub> vs. Centrality



Significant suppression in central Au+Au collisions for high- $p_T J/\psi \rightarrow QGP$ ?

Different from high- $p_T$  pions and low- $p_T J/\psi$ 

Consistent with models including QGP suppression and regeneration

#### **Compare to LHC**



Stronger shadowing effect at LHC? (much lower x)

QWG2013, IHEP (Beijing), Apr. 22-26

#### **Future quarkonium measurement with MTD**



### **Summary**

- $\bullet$  J/ $\psi$  suppression measurement extended to lower beam-energy and high  $p_T$  at RHIC.
- Centrality and  $p_T$  dependence of low- $p_T J/\psi R_{AA}$  is similar in 39, 62 and 200 GeV Au+Au collisions.
- First measurement of high- $p_T J/\psi$  suppression in Au+Au collisions at RHIC.
  - With less complication of CNM and regeneration effects.
  - Significant suppression at  $p_T > 5 \text{ GeV/c} \rightarrow \text{Color-screening effect?}$
- Beam-energy and  $p_T$  dependent  $R_{AA}$  can be consistently described by the models including CNM, QGP suppression and Regeneration. Thanks!

#### **Muon Telescope Detector (MTD)**



### **Upsilon at STAR**



recombination can be neglected at RHIC

☐ Final state co-mover absorption is small.

More suppression in more central collisions

 Consistent with prediction from a model requiring strong 2S and complete 3S suppression.

#### **Reference for R**<sub>AA</sub> calculation



#### **p** + **p** reference from CEM calculation



# $J/\psi$ signal at RHIC low energy



## $J/\psi$ spectra at RHIC low energy

