# The pole mass and static self-energy at large orders in perturbation theory

Based on Bauer, Bali, Pineda: Phys.Rev.Lett. 108 (2012) 242002 Bali, Bauer, Pineda, Torrero: arXiv:1303.3279

#### Antonio Pineda

Universitat Autònoma de Barcelona

QWG2013, Beijing, 22-26 April 2013

## $m_Q$ . Fundamental parameter in heavy quarkonium physics.

### Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\rm \overline{MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1} \,,$$

# $m_Q$ . Fundamental parameter in heavy quarkonium physics.

## Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1} \,,$$

 $m_Q$ . Fundamental parameter in heavy quarkonium physics.

## Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1} ,$$

 $m_Q$ . Fundamental parameter in heavy quarkonium physics.

Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1},$$

 $m_Q$ . Fundamental parameter in heavy quarkonium physics.

Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1},$$

 $m_Q$ . Fundamental parameter in heavy quarkonium physics.

Usual definitions:

- $m_{\overline{\text{MS}}} \rightarrow$  short distance mass.
- $m_{\rm OS} \rightarrow$  natural definition for heavy quark physics.

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1},$$

$$M_B = m_{\rm OS} + \bar{\Lambda}_B + \mathcal{O}(1/m_{\rm OS}), \quad m_{\tilde{G}} = m_{\tilde{g},\rm OS} + \Lambda_H + \mathcal{O}\left(1/m_{\tilde{g},\rm OS}\right)$$

 $M_B$  is renormalon free. Therefore  $m_{OS}$  suffers from renormalon ambiguities:

$$m_{\rm OS} = m_{\overline{\rm MS}}(1 + B_1\alpha_s + B_2\alpha_s^2 + \cdots)$$

with  $B_n \sim n!$ . In other words

$$\delta_{np}^{(\text{pert.})} m_{\text{OS}} = \delta_{np}^{(\text{pert.})} m_{\overline{\text{MS}}} (1 + B_1 \alpha_s + B_2 \alpha_s^2 + \cdots) \sim \Lambda_{\text{QCD}}!$$

 $\infty$ 

$$m_{\rm OS} = m_{\overline{\rm MS}} + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1} ,$$
$$m_{\rm OS} = m_{\overline{\rm MS}} + \int_0^\infty {\rm d}t \ e^{-t/\alpha_s} \ B[m_{\rm OS}](t) , \qquad B[m_{\rm OS}](t) \equiv \sum_{n=0}^\infty r_n \frac{t^n}{n!} .$$

The behavior of the perturbative expansion at large orders is dictated by the closest singularity to the origin of its Borel transform  $(u = \frac{\beta_0 t}{4\pi})$ .

$$B[m_{\rm OS}](t) = N_m \nu \frac{1}{(1-2u)^{1+b}} \left(1 + c_1(1-2u) + c_2(1-2u)^2 + \cdots\right) + (\text{analytic term}),$$

Next renormalon at u = 1.

$$r_{n} \stackrel{n \to \infty}{=} N_{m} \nu \left(\frac{\beta_{0}}{2\pi}\right)^{n} \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \left(1 + \frac{b}{(n+b)}c_{1} + \frac{b(b-1)}{(n+b)(n+b-1)}c_{2} + \cdots\right) + b = \frac{\beta_{1}}{2\beta_{0}^{2}}, \qquad c_{1} = \frac{1}{4 b\beta_{0}^{3}} \left(\frac{\beta_{1}^{2}}{\beta_{0}} - \beta_{2}\right), \qquad \cdots$$

# Over the years a lot of evidence in favour of the existence of the renormalon. Particularly important for heavy quark physics.

Two that I specially like:

- Static potential:  $2m + V_s$  is renormalon free
  - $r_n \stackrel{n \to \infty}{\sim} m_{\overline{\mathrm{MS}}} \left( \frac{\beta_0}{2\pi} \right)^n n! N_m \sum_{s=0}^n \frac{\ln^s [\nu/m_{\overline{\mathrm{MS}}}]}{s!} \sim \nu$

Over the years a lot of evidence in favour of the existence of the renormalon. Particularly important for heavy quark physics. Two that I specially like:

• Static potential:  $2m + V_s$  is renormalon free



Over the years a lot of evidence in favour of the existence of the renormalon. Particularly important for heavy quark physics. Two that I specially like:

• Static potential:  $2m + V_s$  is renormalon free

$$r_n \stackrel{n \to \infty}{\sim} m_{\overline{\mathrm{MS}}} \left( \frac{\beta_0}{2\pi} \right)^n n! N_m \sum_{s=0}^n \frac{\ln^s [\nu/m_{\overline{\mathrm{MS}}}]}{s!} \sim \nu$$



Figure : Plots of the exact  $(r_n^{ex})$  and asymptotic  $(r_n^{as})$  value of  $r_n(\nu)$  at different orders in perturbation theory as a function of  $\nu/m_{\overline{\text{MS}}}$ . From hep-lat/0509022.

- ▶ Not possible to compute using known semiclassical analysis.
- ▶ Based on few orders in perturbation theory (~ 3, 4)
- Against renormalon existence (Suslov), or against renormalon dominance (Zakharov and followers).

## Not possible to compute using known semiclassical analysis.

- Based on few orders in perturbation theory (~ 3, 4)
- Against renormalon existence (Suslov), or against renormalon dominance (Zakharov and followers).

- Not possible to compute using known semiclassical analysis.
- ► Based on few orders in perturbation theory (~ 3, 4)
- Against renormalon existence (Suslov), or against renormalon dominance (Zakharov and followers).

- Not possible to compute using known semiclassical analysis.
- Based on few orders in perturbation theory (~ 3, 4)
- Against renormalon existence (Suslov), or against renormalon dominance (Zakharov and followers).

- Not possible to compute using known semiclassical analysis.
- ► Based on few orders in perturbation theory (~ 3, 4)
- Against renormalon existence (Suslov), or against renormalon dominance (Zakharov and followers).

$$\delta m = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(3,\rho)} \alpha^{n+1} (1/a) \text{ (fundamental)}, \quad \delta m_{\tilde{g}} = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(8,\rho)} \alpha^{n+1} (1/a) \text{ (adjoint)}$$

$$\lim_{n \to \infty} c_n^{(R,\rho)} = r_n(\nu)/\nu$$

$$L^{(R)}(N_S, N_T) = \frac{1}{N_S^3} \sum_n \frac{1}{d_R} \text{tr} \left[ \prod_{n_4=0}^{N_T-1} U_4^R(n) \right] \quad U_{\mu}^R(n) \approx e^{iA_{\mu}^R[(n+1/2)a]}$$
We implement triplet and octet representations  $R$  ( $d_R = 3, 8$ ).
$$P^{(R,\rho)}(N_S, N_T) = -\frac{\ln \langle L^{(R,\rho)}(N_S, N_T) \rangle}{aN_T} = \sum_{n=0}^{\infty} c_n^{(R,\rho)}(N_S, N_T) \alpha^{n+1},$$

$$\delta m = \lim_{n \to \infty} P^{(3,\rho)}(N_S, N_T), \qquad \delta m_{\tilde{g}} = \lim_{n \to \infty} P^{(8,\rho)}(N_S, N_T) ,$$

$$c_n^{(R,\rho)} = \lim_{N_S,N_T \to \infty} c_n^{(R,\rho)}(N_S,N_T) \,.$$

$$\delta m = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(3,\rho)} \alpha^{n+1} (1/a) \text{ (fundamental)}, \quad \delta m_{\tilde{g}} = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(8,\rho)} \alpha^{n+1} (1/a) \text{ (adjoint)}$$
$$\lim_{n \to \infty} c_n^{(R,\rho)} = r_n(\nu)/\nu$$
$$\mathcal{L}^{(R)}(N_S, N_T) = \frac{1}{N_S^3} \sum_n \frac{1}{d_R} \text{tr} \left[ \prod_{n_4=0}^{N_T-1} U_4^R(n) \right] \quad U_{\mu}^R(n) \approx e^{iA_{\mu}^R[(n+1/2)a]}$$
We implement triplet and octet representations  $R$  ( $d_R = 3, 8$ ).
$$P^{(R,\rho)}(N_S, N_T) = -\frac{\ln \langle L^{(R,\rho)}(N_S, N_T) \rangle}{aN_T} = \sum_{n=0}^{\infty} c_n^{(R,\rho)}(N_S, N_T) \alpha^{n+1},$$

$$\delta m = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(3,\rho)} \alpha^{n+1} (1/a) \text{ (fundamental)}, \quad \delta m_{\tilde{g}} = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(8,\rho)} \alpha^{n+1} (1/a) \text{ (adjoint)}$$
$$\lim_{n \to \infty} c_n^{(R,\rho)} = r_n(\nu)/\nu$$
$$L^{(R)}(N_S, N_T) = \frac{1}{N_S^3} \sum_{\mathbf{n}} \frac{1}{d_R} \text{tr} \left[ \prod_{n_4=0}^{N_T-1} U_4^R(n) \right] \quad U_{\mu}^R(n) \approx e^{iA_{\mu}^R[(n+1/2)a]}$$
We implement triplet and octet representations  $R$  ( $d_R = 3, 8$ ).

$$P^{(R,\rho)}(N_S, N_T) = -\frac{\ln \langle L^{(R,\rho)}(N_S, N_T) \rangle}{aN_T} = \sum_{n=0}^{\infty} c_n^{(R,\rho)}(N_S, N_T) \alpha^{n+1} ,$$
  
$$\delta m = \lim_{N_S, N_T \to \infty} P^{(3,\rho)}(N_S, N_T) , \qquad \delta m_{\bar{g}} = \lim_{N_S, N_T \to \infty} P^{(8,\rho)}(N_S, N_T) ,$$
  
$$c_n^{(R,\rho)} = \lim_{N_S, N_T \to \infty} c_n^{(R,\rho)}(N_S, N_T) .$$

$$\delta m = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(3,\rho)} \alpha^{n+1} (1/a) \text{ (fundamental)}, \quad \delta m_{\tilde{g}} = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(8,\rho)} \alpha^{n+1} (1/a) \text{ (adjoint)}$$
$$\lim_{n \to \infty} c_n^{(R,\rho)} = r_n(\nu)/\nu$$
$$L^{(R)}(N_S, N_T) = \frac{1}{N_S^3} \sum_{\mathbf{n}} \frac{1}{d_R} \text{tr} \left[ \prod_{n_4=0}^{N_T-1} U_4^R(n) \right] \quad U_{\mu}^R(n) \approx e^{iA_{\mu}^R[(n+1/2)a]}$$
We implement triplet and octet representations  $R$  ( $d_R = 3, 8$ ).

$$P^{(R,\rho)}(N_S, N_T) = -\frac{\ln\langle L^{(R,\rho)}(N_S, N_T)\rangle}{aN_T} = \sum_{n=0}^{\infty} c_n^{(R,\rho)}(N_S, N_T)\alpha^{n+1},$$
  
$$\delta m = \lim_{N_S, N_T \to \infty} P^{(3,\rho)}(N_S, N_T), \qquad \delta m_{\tilde{g}} = \lim_{N_S, N_T \to \infty} P^{(8,\rho)}(N_S, N_T),$$
  
$$c_n^{(R,\rho)} = \lim_{N_S, N_T \to \infty} c_n^{(R,\rho)}(N_S, N_T).$$

$$\delta m = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(3,\rho)} \alpha^{n+1} (1/a) \text{ (fundamental)}, \quad \delta m_{\tilde{g}} = \frac{1}{a} \sum_{n=0}^{\infty} c_n^{(8,\rho)} \alpha^{n+1} (1/a) \text{ (adjoint)}$$
$$\lim_{n \to \infty} c_n^{(R,\rho)} = r_n(\nu)/\nu$$
$$L^{(R)}(N_S, N_T) = \frac{1}{N_S^3} \sum_{\mathbf{n}} \frac{1}{d_R} \text{tr} \left[ \prod_{n_4=0}^{N_T-1} U_4^R(n) \right] \quad U_{\mu}^R(n) \approx e^{iA_{\mu}^R[(n+1/2)a]}$$
We implement triplet and octet representations  $R$  ( $d_R = 3, 8$ ).

$$P^{(R,\rho)}(N_S, N_T) = -\frac{\ln\langle L^{(R,\rho)}(N_S, N_T)\rangle}{aN_T} = \sum_{n=0}^{\infty} c_n^{(R,\rho)}(N_S, N_T)\alpha^{n+1},$$
  
$$\delta m = \lim_{N_S, N_T \to \infty} P^{(3,\rho)}(N_S, N_T), \qquad \delta m_{\tilde{g}} = \lim_{N_S, N_T \to \infty} P^{(8,\rho)}(N_S, N_T),$$
  
$$c_n^{(R,\rho)} = \lim_{N_S, N_T \to \infty} c_n^{(R,\rho)}(N_S, N_T).$$

|            | $\mathcal{O}(\alpha^4)$ | $\mathcal{O}(\alpha^{20})$ | $\mathcal{O}(\alpha^{32})$ |
|------------|-------------------------|----------------------------|----------------------------|
| $N_S(N_T)$ | 4(4)                    | 8(8, 10, 12, 14)           | 4(8)                       |

Table : The first arrow states to which order in  $\alpha$  the coefficients of  $c_n^{(R)}(N_T, N_S)$  have been computed for each specific lattice volume for PBC.

| $\mathcal{O}(\alpha^3)$    | $N_S(N_T)$     | 5(5,6,7,8,10)                     |                |        |        |
|----------------------------|----------------|-----------------------------------|----------------|--------|--------|
| $\mathcal{O}(\alpha^4)$    | $N_S(N_T)$     | 4(5, 6, 7, 8, 10, 12, 16, 20, 24) | 12(16,20)      |        |        |
| $\mathcal{O}(\alpha^{12})$ | $N_S(N_T)$     | 6(6, 8, 10, 12, 16)               | 8(12, 16)      |        |        |
| $\mathcal{O}(\alpha^{12})$ | $N_S(N_T)$     | 10(8, 12, 16, 20)                 | 16(12, 16, 20) |        |        |
| $\mathcal{O}(\alpha^{20})$ | $N_{S}(N_{T})$ | 7(7,8)                            | 8(8,10)        | 9(12)  | 10(10) |
| $\mathcal{O}(\alpha^{20})$ | $N_{S}(N_{T})$ | 11(16)                            | 12(12)         | 14(14) |        |

Table : The first column states to which order in  $\alpha$  the coefficients of  $c_n^{(R)}(N_T, N_S)$  and the associated ratios have been computed for each specific lattice volume for TBC.



Figure :  $c_{1,2,3}^{(3,0)}(4, N_T)$  as a function of  $1/N_T$ , in comparison to a constant plus linear fit, a constant plus cubic fit, and a constant fitted only to the  $N_T > 10$  points.

The pole mass and static self-energy at large orders in perturbation theory

$$\delta m(N_S) = \lim_{N_T \to \infty} P(N_S, N_T)$$
 and  $C_n(N_S) = \lim_{N_T \to \infty} C_n(N_S, N_T)$ .

For large  $N_S$ , we write

$$c_n(N_S) = c_n - rac{f_n(N_S)}{N_S} + \mathcal{O}\left(rac{1}{N_S^2}
ight).$$



Figure : Self-interactions with replicas producing  $1/L = 1/(aN_S)$  Coulomb terms.

$$\delta m(N_S) = \delta m - \frac{1}{aN_S} \sum_{n=0}^{\infty} f_n \alpha^{n+1} \left( (aN_S)^{-1} \right) + \mathcal{O}\left( \frac{1}{N_S^2} \right).$$

Therefore, the coefficient  $f_n(N_S)$  is a polynomial of  $ln(N_S)$ :

$$f_n(N_S) = \sum_{i=0}^n f_n^{(i)} \ln^i(N_S),$$

 $f_n^{(0)} = f_n$  and the coefficients  $f_n^{(i)}$  for i > 0 are determined by  $f_m$  with m < n and  $\beta_j$  with  $j \le n - 1$ .

$$f_{1}(N_{S}) = f_{1} + f_{0} \frac{\beta_{0}}{2\pi} \ln(N_{S}),$$
  
$$f_{2}(N_{S}) = f_{2} + \left[2f_{1} \frac{\beta_{0}}{2\pi} + f_{0} \frac{\beta_{1}}{8\pi^{2}}\right] \ln(N_{S}) + f_{0} \left(\frac{\beta_{0}}{2\pi}\right)^{2} \ln^{2}(N_{S}),$$

and so on.

$$P \propto \int_{1/(aN_S)}^{1/a} dk \,\alpha(k) \sim \frac{1}{a} \sum_n c_n \alpha^{n+1} \left( a^{-1} \right) - \frac{1}{aN_S} \sum_n c_n \alpha^{n+1} \left( (aN_S)^{-1} \right) ,$$
$$c_n \simeq N_m \left( \frac{\beta_0}{2\pi} \right)^n n! , \qquad f_n^{(i)}(N_S) \simeq N_m \left( \frac{\beta_0}{2\pi} \right)^n \frac{n!}{i!} .$$

The pole mass and static self-energy at large orders in perturbation theory



Figure :  $c_n^{(3,0)}(N_S)/c_n^{(3,0)} - 1$  for  $n \in \{0, 1, 2, 3, 4, 5, 7, 9, 11, 15\}$  (top to bottom). For each value of  $N_S$  we have plotted the data point with the maximum value of  $N_T$ . The curves represent the global fit.  $-(1/N_S)f_{0,DLPT}^{(3,0)}/c_{0,DLPT}^{(3,0)}$  is shown for n = 0.

The pole mass and static self-energy at large orders in perturbation theory



Figure : Zoom of previous Figure for n = 9.

$$\begin{split} \frac{c_n^{(3,\rho)}}{c_{n-1}^{(3,\rho)}} \frac{1}{n} &= \frac{c_n^{(8,\rho)}}{c_{n-1}^{(8,\rho)}} \frac{1}{n} \\ &= \frac{\beta_0}{2\pi} \left\{ 1 + \frac{b}{n} - \frac{bs_1}{n^2} + \frac{1}{n^3} \left[ b^2 s_1^2 + b(b-1)(s_1 - 2s_2) \right] + \mathcal{O}\left(\frac{1}{n^4}\right) \right\} \end{split}$$



Figure : The ratios  $c_n/(nc_{n-1})$  for the smeared and unsmeared, triplet and octet fundamental static self-energies, compared to the prediction for the LO, next-to-leading order (NLO), NNLO and NNNLO of the 1/n expansion.

The pole mass and static self-energy at large orders in perturbation theory



Figure :  $N_m$ , determined via  $r_n$  truncated at NNLO, from the coefficients  $c_n^{(3,0)}, c_n^{(3,1/6)}, f_n^{(3,0)}$  and  $f_n^{(3,1/6)}$ . The horizontal band is our final result.

$$\alpha_{\overline{\text{MS}}}(\mu) = \alpha_{\text{latt}}(\mu) \left( 1 + d_1 \alpha_{\text{latt}}(\mu) + d_2 \alpha_{\text{latt}}^2(\mu) + d_3 \alpha_{\text{latt}}^3(\mu) + \mathcal{O}(\alpha_{\text{latt}}^4) \right) \,,$$

 $N_{m,m_{\tilde{g}}}^{\overline{\mathrm{MS}}} = N_{m,m_{\tilde{g}}}^{\mathrm{latt}} \Lambda_{\mathrm{latt}} / \Lambda_{\overline{\mathrm{MS}}}, \quad \text{where} \quad \Lambda_{\overline{\mathrm{MS}}} = e^{\frac{2\pi d_{1}}{\beta_{0}}} \Lambda_{\mathrm{latt}} \approx 28.809338139488 \Lambda_{\mathrm{latt}}.$ This yields the numerical values

$$N_m^{\overline{
m MS}} = 0.660(56)\,, \quad C_F/C_A\,N_{m_{\tilde{g}}}^{\overline{
m MS}} = -C_F/C_A\,N_\Lambda^{\overline{
m MS}} = 0.649(62)\,.$$

Other combinations of interest are

$$N_{V_s}^{\overline{
m MS}} = -1.32(11), \quad N_{V_o}^{\overline{
m MS}} = 0.14(18).$$

Assuming that

$$c_{3,\overline{\mathrm{MS}}} \simeq N_m^{\overline{\mathrm{MS}}} \left(\frac{\beta_0}{2\pi}\right)^3 \frac{\Gamma(4+b)}{\Gamma(1+b)} \left(1 + \frac{b}{(3+b)}s_1 + \frac{b(b-1)}{(3+b)(2+b)}s_2 + \cdots\right),$$

and using our central value  $c_{
m 3,latt}^{
m (3,0)}=$  794.5, we obtain

$$d_3\simeq 365\,,\qquad eta_3^{
m latt}\simeq -1.7 imes 10^6\,.$$

$$\alpha_{\overline{\text{MS}}}(\mu) = \alpha_{\text{latt}}(\mu) \left( 1 + d_1 \alpha_{\text{latt}}(\mu) + d_2 \alpha_{\text{latt}}^2(\mu) + d_3 \alpha_{\text{latt}}^3(\mu) + \mathcal{O}(\alpha_{\text{latt}}^4) \right) \,,$$

 $N_{m,m_{\tilde{g}}}^{\overline{\mathrm{MS}}} = N_{m,m_{\tilde{g}}}^{\mathrm{latt}} \Lambda_{\mathrm{latt}} / \Lambda_{\overline{\mathrm{MS}}}, \quad \text{where} \quad \Lambda_{\overline{\mathrm{MS}}} = e^{\frac{2\pi d_{1}}{\beta_{0}}} \Lambda_{\mathrm{latt}} \approx 28.809338139488 \Lambda_{\mathrm{latt}}.$ This yields the numerical values

$$N_m^{\overline{
m MS}} = 0.660(56)\,, \quad C_F/C_A\,N_{m_{\tilde{g}}}^{\overline{
m MS}} = -C_F/C_A\,N_\Lambda^{\overline{
m MS}} = 0.649(62)\,.$$

Other combinations of interest are

$$N_{V_s}^{\overline{
m MS}} = -1.32(11), \quad N_{V_o}^{\overline{
m MS}} = 0.14(18).$$

Assuming that

$$c_{3,\overline{\mathrm{MS}}} \simeq N_m^{\overline{\mathrm{MS}}} \left(\frac{\beta_0}{2\pi}\right)^3 \frac{\Gamma(4+b)}{\Gamma(1+b)} \left(1 + \frac{b}{(3+b)}s_1 + \frac{b(b-1)}{(3+b)(2+b)}s_2 + \cdots\right),$$

and using our central value  $c_{3,\text{latt}}^{(3,0)} = 794.5$ , we obtain

$$d_3\simeq 365\,,\qquad eta_3^{
m latt}\simeq -1.7 imes 10^6\,.$$

# CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the coefficients over many orders, from around  $\alpha^9$  up to  $\alpha^{20}$ , vastly increasing the credibility of the prediction.

 $N_m^{\text{latt}} = 19.0 \pm 1.6$ ,  $C_F / C_A N_A^{\text{latt}} = -18.7 \pm 1.8$ ,  $N_m^{\overline{\text{MS}}} = 0.660 \pm 0.056$ ,  $C_F / C_A N_A^{\overline{\text{MS}}} = -0.649 \pm 0.062$ .

Completely consistent with continuum-like determinations.

We have (numerically) proven, beyond any reasonable doubt, the existence of the renormalon in QCD.

# CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the coefficients over many orders, from around  $\alpha^9$  up to  $\alpha^{20}$ , vastly increasing the credibility of the prediction.

$$\begin{split} N_m^{\text{latt}} &= 19.0 \pm 1.6 \,, \quad C_F/C_A \, N_\Lambda^{\text{latt}} = -18.7 \pm 1.8 \,, \ N_m^{\overline{ ext{MS}}} &= 0.660 \pm 0.056 \,, \quad C_F/C_A \, N_\Lambda^{\overline{ ext{MS}}} = -0.649 \pm 0.062 \,. \end{split}$$

#### Completely consistent with continuum-like determinations.

We have (numerically) proven, beyond any reasonable doubt, the existence of the renormalon in QCD.

# CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the coefficients over many orders, from around  $\alpha^9$  up to  $\alpha^{20}$ , vastly increasing the credibility of the prediction.

$$N_m^{\text{latt}} = 19.0 \pm 1.6$$
,  $C_F/C_A N_A^{\text{latt}} = -18.7 \pm 1.8$ ,  
 $N_m^{\overline{\text{MS}}} = 0.660 \pm 0.056$ ,  $C_F/C_A N_A^{\overline{\text{MS}}} = -0.649 \pm 0.062$ .

Completely consistent with continuum-like determinations.

We have (numerically) proven, beyond any reasonable doubt, the existence of the renormalon in QCD.