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INTRODUCTION POLYAKOV LOOP CONCLUSIONS

Motivation

mQ . Fundamental parameter in heavy quarkonium physics.

Usual definitions:

I mMS → short distance mass.
I mOS → natural definition for heavy quark physics.

mOS = mMS +
∞∑

n=0

rnα
n+1
s ,

Renormalon (OPE) analysis predict rn ∼ n!.
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MB = mOS + Λ̄B +O(1/mOS) , mG̃ = mg̃,OS + ΛH +O
(
1/mg̃,OS

)
MB is renormalon free. Therefore mOS suffers from renormalon ambiguities:

mOS = mMS(1 + B1αs + B2α
2
s + · · · )

with Bn ∼ n!. In other words

δ
(pert.)
np mOS = δ

(pert.)
np mMS(1 + B1αs + B2α

2
s + · · · ) ∼ ΛQCD!
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mOS = mMS +
∞∑

n=0

rnα
n+1
s ,

mOS = mMS +

∞∫
0

dt e−t/αs B[mOS](t) , B[mOS](t) ≡
∞∑

n=0

rn
tn

n!
.

The behavior of the perturbative expansion at large orders is dictated by the
closest singularity to the origin of its Borel transform (u = β0 t

4π ).

B[mOS](t) = Nmν
1

(1 − 2u)1+b

(
1 + c1(1 − 2u) + c2(1 − 2u)2 + · · ·

)
+(analytic term),

Next renormalon at u = 1.

rn
n→∞
= Nm ν

(
β0

2π

)n
Γ(n + 1 + b)
Γ(1 + b)

(
1 +

b
(n + b)

c1 +
b(b − 1)

(n + b)(n + b − 1)
c2 + · · ·

)
.

b =
β1

2β2
0
, c1 =

1
4 bβ3

0

(
β2

1

β0
− β2

)
, · · ·
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Over the years a lot of evidence in favour of the existence of the renormalon.
Particularly important for heavy quark physics.
Two that I specially like:

I Static potential: 2m + Vs is renormalon free
I

rn
n→∞∼ mMS

(
β0

2π

)n

n!Nm

n∑
s=0

lns[ν/mMS]

s!
∼ ν
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Figure : Plots of the exact (rex
n ) and asymptotic (ras

n ) value of rn(ν) at different orders in
perturbation theory as a function of ν/mMS. From hep-lat/0509022.
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INTRODUCTION POLYAKOV LOOP CONCLUSIONS

Yet...

I Not possible to compute using known semiclassical analysis.
I Based on few orders in perturbation theory (∼ 3, 4)
I Against renormalon existence (Suslov), or against renormalon

dominance (Zakharov and followers).

We would like to have a proof (at the same level of existing proofs of a linear
potential at long distances), beyond any reasonable doubt, of the existence of
the renormalon in QCD (and in heavy quarkonium physics).
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POLYAKOV LOOP versus δm (and m)

Possible to compute the energy of an static source in the lattice: δm of HQET.
We use Numerical Stochastic Perturbation Theory

δm =
1
a

∞∑
n=0

c(3,ρ)
n αn+1(1/a) (fundamental), δmg̃ =

1
a

∞∑
n=0

c(8,ρ)
n αn+1(1/a) (adjoint)

lim
n→∞

c(R,ρ)
n = rn(ν)/ν

L(R)(NS ,NT ) =
1

N3
S

∑
n

1
dR

tr

NT −1∏
n4=0

UR
4 (n)

 UR
µ (n) ≈ eiAR

µ[(n+1/2)a]

We implement triplet and octet representations R (dR = 3, 8).

P(R,ρ)(NS ,NT ) = − ln⟨L(R,ρ)(NS ,NT )⟩
aNT

=
∞∑

n=0

c(R,ρ)
n (NS ,NT )α

n+1 ,

δm = lim
NS ,NT →∞

P(3,ρ)(NS ,NT ) , δmg̃ = lim
NS ,NT →∞

P(8,ρ)(NS ,NT ) ,

c(R,ρ)
n = lim

NS ,NT →∞
c(R,ρ)

n (NS ,NT ) .
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O(α4) O(α20) O(α32)
NS(NT ) 4(4) 8(8, 10, 12, 14) 4(8)

Table : The first arrow states to which order in α the coefficients of c(R)
n (NT ,NS) have

been computed for each specific lattice volume for PBC.

O(α3) NS(NT ) 5(5, 6, 7, 8, 10)
O(α4) NS(NT ) 4(5, 6, 7, 8, 10, 12, 16, 20, 24) 12(16, 20)
O(α12) NS(NT ) 6(6, 8, 10, 12, 16) 8(12, 16)
O(α12) NS(NT ) 10(8, 12, 16, 20) 16(12, 16, 20)
O(α20) NS(NT ) 7(7, 8) 8(8, 10) 9(12) 10(10)
O(α20) NS(NT ) 11(16) 12(12) 14(14)

Table : The first column states to which order in α the coefficients of c(R)
n (NT ,NS) and

the associated ratios have been computed for each specific lattice volume for TBC.
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Figure : c(3,0)
1,2,3(4,NT ) as a function of 1/NT , in comparison to a constant plus linear fit,

a constant plus cubic fit, and a constant fitted only to the NT > 10 points.
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δm(NS) = lim
NT →∞

P(NS ,NT ) and cn(NS) = lim
NT →∞

cn(NS ,NT ) .

For large NS , we write

cn(NS) = cn −
fn(NS)

NS
+O

(
1

N2
S

)
.

L

∝ αs

(

1

L

)

Figure : Self-interactions with replicas producing 1/L = 1/(aNS) Coulomb terms.
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δm(NS) = δm − 1
aNS

∞∑
n=0

fnαn+1
(
(aNS)

−1
)
+O

(
1

N2
S

)
.

Therefore, the coefficient fn(NS) is a polynomial of ln(NS):

fn(NS) =
n∑

i=0

f (i)n lni(NS) ,

f (0)n = fn and the coefficients f (i)n for i > 0 are determined by fm with m < n
and βj with j ≤ n − 1.

f1(NS) = f1 + f0
β0

2π
ln(NS) ,

f2(NS) = f2 +
[
2f1

β0

2π
+ f0

β1

8π2

]
ln(NS) + f0

(
β0

2π

)2

ln2(NS) ,

and so on.

P ∝
∫ 1/a

1/(aNS)

dk α(k) ∼ 1
a

∑
n

cnα
n+1

(
a−1

)
− 1

aNS

∑
n

cnα
n+1

(
(aNS)

−1
)
,

cn ≃ Nm

(
β0

2π

)n

n! , f (i)n (NS) ≃ Nm

(
β0

2π

)n n!
i!

.
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each value of NS we have plotted the data point with the maximum value of NT . The
curves represent the global fit. −(1/NS)f
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0,DLPT is shown for n = 0.
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c(3,ρ)
n

c(3,ρ)
n−1

1
n
=

c(8,ρ)
n

c(8,ρ)
n−1

1
n

=
β0

2π

{
1 +

b
n
− bs1

n2 +
1
n3

[
b2s2

1 + b(b − 1)(s1 − 2s2)
]
+O

(
1
n4

)}
.
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Figure : The ratios cn/(ncn−1) for the smeared and unsmeared, triplet and octet
fundamental static self-energies, compared to the prediction for the LO, next-to-leading
order (NLO), NNLO and NNNLO of the 1/n expansion.
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n . The horizontal band is our final result.
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αMS(µ) = αlatt(µ)
(

1 + d1αlatt(µ) + d2α
2
latt(µ) + d3α

3
latt(µ) +O(α4

latt)
)
,

NMS
m,mg̃

= N latt
m,mg̃

Λlatt/ΛMS , where ΛMS = e
2πd1
β0 Λlatt ≈ 28.809338139488Λlatt .

This yields the numerical values

NMS
m = 0.660(56) , CF/CA NMS

mg̃
= −CF/CA NMS

Λ = 0.649(62) .

Other combinations of interest are

NMS
Vs = −1.32(11) , NMS

Vo = 0.14(18) .

Assuming that

c3,MS ≃ NMS
m

(
β0

2π

)3
Γ(4 + b)
Γ(1 + b)

(
1 +

b
(3 + b)

s1 +
b(b − 1)

(3 + b)(2 + b)
s2 + · · ·

)
,

and using our central value c(3,0)
3,latt = 794.5, we obtain

d3 ≃ 365 , βlatt
3 ≃ −1.7 × 106 .
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CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the
coefficients over many orders, from around α9 up to α20, vastly increasing the
credibility of the prediction.

N latt
m = 19.0 ± 1.6 , CF/CA N latt

Λ = −18.7 ± 1.8 ,

NMS
m = 0.660 ± 0.056 , CF/CA NMS

Λ = −0.649 ± 0.062 .

Completely consistent with continuum-like determinations.

We have (numerically) proven, beyond any reasonable doubt, the existence
of the renormalon in QCD.
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