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INTRODUCTION

Motivation

mq. Fundamental parameter in heavy quarkonium physics.

Usual definitions:
> mys — short distance mass.
» mos — natural definition for heavy quark physics.

o0
2 : n+1
Mos = ”’MS + Iog 5

n=0

Renormalon (OPE) analysis predict r, ~ n!.

The pole mass and static self-energy at large orders in perturbation theory Antonio Pineda



INTRODUCTION

Mz = mos +/_\B+O(1/mos) , Mg = mg705+/\H+O(1/m§‘OS)

Mg is renormalon free. Therefore mos suffers from renormalon ambiguities:
Mos = ”FMS(“ + Bias + BZOég + - )
with B, ~ n!. In other words

5%“‘)17705 = 5,(7};3'1')%(1 + Bias + Bai + -+ ) ~ Agep!
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oo
2 : n+1
Mos = ”,MS + rnas 5
n=0

oo e oo tn
Mos = Mg + /dte /s Blmos](t) , Blmos](t) = Zrnm'
A n=0

The behavior of the perturbative expansion at large orders is dictated by the
closest singularity to the origin of its Borel transform (u = ?).

T

1

B[mos](t) = Nm”m

(1 +ci(1—2u) + c(1 — 2u)? + - -- )Jr(analytic term),

Next renormalon at u = 1.

n—oo Bo\" T(n+1+b) b b(b—1)
o= My <Z> D) (1+(n+b)c1+(n+b)(n+bf1)02+"'>'

_ B _ 1 (B
bfzﬂgy C174bﬂg<,30 2)7
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INTRODUCTION

Over the years a lot of evidence in favour of the existence of the renormalon.
Particularly important for heavy quark physics.
Two that | specially like:

» Static potential: 2m + Vs is renormalon free

>

n n s
n—oo fo 2 : In®[v/ mys]
rn ~ mm (E) nINm ar T ~ UV
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Figure : Plots of the exact (rg*) and asymptotic (r2°) value of ry(v) at different orders in
perturbation theory as a function of v/ mys. From hep-lat/0509022.
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INTRODUCTION

Yet...

» Not possible to compute using known semiclassical analysis.
» Based on few orders in perturbation theory (~ 3, 4)

» Against renormalon existence (Suslov), or against renormalon
dominance (Zakharov and followers).

We would like to have a proof (at the same level of existing proofs of a linear
potential at long distances), beyond any reasonable doubt, of the existence of
the renormalon in QCD (and in heavy quarkonium physics).
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INTRODUCTION POLYAKOV LOOP

POLYAKQV LOQOP versus ém (and m)

Possible to compute the energy of an static source in the lattice: ém of HQET.
We use Numerical Stochastic Perturbation Theory

1o G, 1 15~ g6 ! joi
sm= g;cf, Pt (1/a) (fundamental), dmy = E;Cr() ot (1/a) (adjoint)

The pole mass and static self-energy at large orders in perturbation theory Antonio Pineda



INTRODUCTION POLYAKOV LOOP

POLYAKQV LOQOP versus ém (and m)

Possible to compute the energy of an static source in the lattice: ém of HQET.
We use Numerical Stochastic Perturbation Theory

oo o0
sm= % Z c®”)a™(1/a) (fundamental), dmg = 15 z c®)a"1(1/a) (adjoint)
n=0 n=0
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n—oo
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POLYAKQV LOQOP versus ém (and m)

Possible to compute the energy of an static source in the lattice: ém of HQET.
We use Numerical Stochastic Perturbation Theory

om= 1 Z Cg3vp)a"+1 (1/a) (fundamental), 5’77@ _ 1 z C{()S,p)an+1 (1/a) (adjoint)
@ n=0 a n=0
nimoo C’(;q’p) = r"(y)/y
1 1 i R R AP (nad /2)4
(Ns, Nr) = N > v [T Ufm|  Ui(n) ~ e#ilin1/2d
n nyg=0

We implement triplet and octet representations R (dg = 3, 8).

(Rp) __In{L®(Ns, Nr)) Z (R.p) o
P (Ns, NT) = aN; Cn (Ns s
— i (3,p) S i 8,p)
om = NS’,'\'IHLOO P**(Ns, Nr), dmg = Ns’;\llgloo P& (Ns, Nr)
R, . R,
CS, 2 = Ns,ll\lhm—)oo Cﬁ, p)(Ns, NT) .

The pole mass and static self-energy at large orders in perturbation theory Antonio Pineda



INTRODUCTION POLYAKOV LOOP

O(a") O(a™) 0(a*)
Ns(N7) | 4(&) | 8(8,10,12,14) 4(8)

Table : The first arrow states to which order in o the coefficients of c,(,H)(NT, Ng) have

been computed for each specific lattice volume for PBC.

O(a®) [ Ns(Nr) 5(5,6,7,8,10)

O(a*) | Ns(Nr)[4(5,6,7,8,10,12,16,20,24) | 12(16,20)

O(a™) | Ns(Nr) 6(6,8,10,12,16) 8(12,16)

O(a™) | Ns(Nr) 10(8, 12,16, 20) 16(12, 16, 20)

O(a®) | Ns(Nr) 7(7,8) 8(8,10) 9(12) [10(10)
O(a®) | Ns(Nr) 11(16) 12(12) 14(14)

Table : The first column states to which order in « the coefficients of cf,R)( Nt,Ng) and
the associated ratios have been computed for each specific lattice volume for TBC.
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Figure : c1 2 3(4 N7t) as a function of 1/Nr, in comparison to a constant plus linear fit,
a constant plus cubic fit, and a constant fitted only to the Nt > 10 points.
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om(Ns) = im P(Ns,Nr) and  ci(Ns) = lim_cn(Ns, Nr).

T—00

For large Ns, we write

L
] 1 A 1 1 A 1 1
1 1 1 1 1 1 1 1
1 1 [ 1 1 [ 1 1
1 1 [ 1 1 [ 1 1
R . L --= o |
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Figure : Self-interactions with replicas producing 1/L = 1/(aNg) Coulomb terms.
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o 1 — n+1 —1 1
sm(Ns) = om — o ; frcr ((aNs) ) + O(Vg) .

Therefore, the coefficient f,(Ns) is a polynomial of In(Ns):

n

f(Ns) = > £ In'(Ns),

i=0

f,SO) = f, and the coefficients f,S’) for i > 0 are determined by f, with m < n
and g; with j < n—1.

(Ns) = i + o5 In(Ns)
(Ns) =2+ [2f1 A + 1o 8612} In(Ns) + fo (ﬂ ) In*(Ns)
and so on.
P x /”a dk a(k) ~ ~ Zc o™ (a") 1 3 cpa™! ((aN )*1)
1/(aNs) aNs & N

N Bo (i) N Bo\" n!
Cn = Nm (E) nl 5 fn (NS) = Nm Z 7 .
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0 005 010 015 020 025
1/Ng

Figure : ¢ (Ng)/c®® — 1 forn e {0,1,2,3,4,5,7,9,11,15} (top to bottom). For
each value of Ng we have plotted the data point with the maximum value of Nt. The

curves represent the global fit. —(1/ Ns)féséi)pr / céSbOL)W is shown for n = 0.
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Figure : Zoom of previous Figure forn = 9.
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Figure : The ratios cn/(nc,_1) for the smeared and unsmeared, triplet and octet

fundamental static self-energies, compared to the prediction for the LO, next-to-leading
order (NLO), NNLO and NNNLO of the 1/n expansion.
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Figure : Nm, determined via rp truncated at NNLO, from the coefficients
c,(73’0), c,(,3’1/ 6), f,(73’°) and f,(,3'1/ ®)_ The horizontal band is our final result.
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ags(i) = (i) (1 + drana(p) + dZCVﬁm(N) + dSQitt(N) + O(aﬁm)) ,

27d.

J— ema
Nimin, = Nt N /Agzs . Where A = € 70 Ay & 28.809338139488 Ay
This yields the numerical values

Ny® = 0.660(56), Cr/CaNpy = —Cr/CaNX® = 0.649(62).
Other combinations of interest are

NYE = —1.32(11),  NF =0.14(18).
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ags(i) = (i) (1 + dranu(p) + Geaby (1) + dsai (1) + O(aﬁm)) ,

27dy

N,“,fifmg = N};f‘mgmm /Nsis, Where Agg = € Po Ay ~ 28.809338139488 Ay -
This yields the numerical values

NYS = 0.660(56), Cr/Ca NMS —Cr/CaNY® = 0.649(62) .
Other combinations of interest are
NYE = —1.32(11),  NF =0.14(18).

Assuming that

s (o) T4t b) b o )
Cs s = Nm (ﬁ) r(1+b) <1+(3+b)s1+(3+b)(2+b) . )

and using our central value (3131 = 794.5, we obtain

ds ~ 365, B~ 1.7 x10°.
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CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the
coefficients over many orders, from around o up to o®°, vastly increasing the
credibility of the prediction.
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CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the
coefficients over many orders, from around o up to o®°, vastly increasing the

credibility of the prediction.

N2 =19.0+1.6, Cr/CaNM =-187+18,
NYS = 0.660 + 0.056, Cr/CaNYS = —0.649 £ 0.062.

Completely consistent with continuum-like determinations.
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CONCLUSIONS

For the first time, it was possible to follow the factorial growth of the
coefficients over many orders, from around o up to o®°, vastly increasing the
credibility of the prediction.

N2 =19.0+1.6, Cr/CaNM =-187+18,
NYS = 0.660 + 0.056, Cr/CaNYS = —0.649 £ 0.062.

Completely consistent with continuum-like determinations.

We have (numerically) proven, beyond any reasonable doubt, the existence
of the renormalon in QCD.
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