Recent results in B_c physics at LHCb

Yiming Li Tsinghua University on behalf of the LHCb collaboration

25 April 2013 Quarkonia 2013 (QWG9) @ IHEP, Beijing, China

Content

- Introduction
- Recent results
 - Production and mass measurement using $B_c^+ \rightarrow J/\psi \pi^+$
 - Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$
 - Observation of $B_c^+ \rightarrow \psi(2S)\pi^+$
 - Observation of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ and mass measurement
- Summary and prospects

B_c physics

- The only meson composed of different heavy flavour quarks
- Mass spectrum similar to quarkonium states
- Production: mainly through gg fusion at hadron colliders
- Large production rate at LHC!
 - $\sigma(B_c)_{LHC}/\sigma(B_c)_{Tevatron} \sim O(10)$
 - $\sigma(B_c) \sim 0.4 \ \mu b$ at $\sqrt{s} = 7 \ \text{TeV}$, $\sim 0.9 \ \mu b$ at 14 TeV

B_c decays

- Excited states decay to B_c through strong/EM interaction
- Ground state only decays weakly

- Rich decay modes \Rightarrow lifetime shorter than other B mesons
 - $\tau = 0.453 \pm 0.041$ ps <u>CDF,PRL 97(2006)012002; D0,PRL 102(2009)092001</u>

LHCb detector

See Previous talks by J. Bressieux, M. Adinolfi, Y. Zhang

Successful data taking since 2010 ---- 2010: 37 pb⁻¹ ---- 2011: 1.0 fb⁻¹ ---- 2012: 2 fb⁻¹

Trigger system reduces the data rate from 40MHz to 3–5kHz

• 90% efficiency for dimuon channels; ~ 30% efficiency for hadronic final states

B_c production using $B_c \rightarrow J/\psi \pi^+$

PRL109(2012) 232001

 $B_c^+ \to J/\psi \pi^+, J/\psi \to \mu^+\mu^-$, normalisation channel $B^+ \to J/\psi K^+$

Based on 0.37 fb⁻¹ data @ 7 TeV

- Signal fitted with double-sided Crystal Ball function
- Cabibbo suppressed background for $B^+ \rightarrow I/\psi K^+$ is considered

$$\begin{array}{l} \frac{\sigma(pp \rightarrow B_c^+ X) \cdot \mathcal{B}(B_c^+ \rightarrow J/\psi\pi^+)}{\sigma(pp \rightarrow B^+ X) \cdot \mathcal{B}(B^+ \rightarrow J/\psiK^+)} & p_T > 4 \text{ GeV} \\ = (0.68 \pm 0.10(\text{stat.}) \pm 0.03(\text{syst.}) \pm 0.05(\text{lifetime}))\% \end{array}$$

- Efficiencies are calculated in individual (p_T, η) bins
- Systematic uncertainty is dominated by uncertainty on B_c lifetime

GeV,

< 4.5

PRL109(2012) 232001

- Measurement of mass difference $M(B_c^+) M(B^+)$ is obtained by simultaneous fit of $J/\psi\pi^+$ and $J/\psi K^+$ invariant mass spectra
- The uncertainties due to detector description and alignment are cancelled in mass difference measurement
- The main systematic uncertainty comes from momentum scale calibration

$$M(B_c^+) = 6273.7 \pm 1.3(\text{stat.}) \pm 1.6(\text{syst.}) \text{ MeV}/c^2$$

 $M(B_c^+) - M(B^+) = 994.6 \pm 1.3(\text{stat.}) \pm 0.6(\text{syst.}) \text{ MeV}/c^2$

Observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$

PRL108(2012) 251802

- Expected BR larger than $B_c^+ \rightarrow J/\psi \pi^+$ by 1.5 – 2.3 <u>Rakitin and Koshkareav, PRD80,014005</u> <u>Likhoded and Luchinsky, PRD81,014015</u>
- The yield is smaller due to the limited detector acceptance
- 0.8 fb⁻¹ data at $\sqrt{s} = 7$ TeV
- Selection based on ratio of S/B likelihood as functions of discriminating variables:
 - *IP*, *vertex fit quality, angle between final state particles*

First observation!

Confirmed by CMS <u>CMS-PAS-BPH-11-003</u>

 $N(B_c^+ \to J/\psi \ \pi^+ \ \pi^- \ \pi^+) = 135 \pm 14$ $N(B_c^+ \to J/\psi \ \pi^+) = 414 \pm 25$

Branching fraction

PRL108(2012) 251802

$$\frac{\mathcal{B}(B_c^+ \to J/\psi \pi^+ \pi^+ \pi^-)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 2.41 \pm 0.30 \text{(stat.)} \pm 0.33 \text{(syst.)}$$

- Main contribution to the systematic uncertainty: model dependence of the efficiency estimation
- Consistent with the theoretic prediction 1.9 2.3
 <u>Likhoded and Luchinsky, PRD81,014015</u>

Also in agreement with
$$\frac{\mathcal{B}(B^+ \to \bar{D}^{*0}\pi^+\pi^-\pi^+)}{\mathcal{B}(B^+ \to \bar{D}^{*0}\pi^+)} = 2.0 \pm 0.3$$

PDG 2010

The first test of theoretical predictions for B_c^+ decay branching fractions

Observation of $B_c^+ \rightarrow \psi(2S)\pi^+$

- Similar event topology and identical final states
- Search for the decay performed with 1 fb⁻¹ data @ 7 TeV
- Event selection using boosted decision tree (BDT)
 - Input variables based on kinematics and event geometry

Observation of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

arXiv:1303.1737

- Hadronic mode w/o first generation quarks
- Colour-suppressed spectator and annihilation diagrams also contribute
- Search performed with 3 fb⁻¹ (1 fb⁻¹ @ 7 TeV; 2 fb⁻¹ @ 8 TeV)

$$B_c^+ \rightarrow J/\psi D_s^{*+}: D_s^{*+} \rightarrow D_s^+ \gamma/D_s^+ \pi^0$$

partial reconstruction; $J/\psi D_s^{*+}$ shape from simulation for both $A_{\pm\pm}$ and A_{00} helicity amplitudes

$$B_{c}^{+} \rightarrow J/\psi D_{s}^{+}: J/\psi \rightarrow \mu^{+}\mu^{-},$$
$$D_{s}^{+} \rightarrow (K^{+}K^{-})_{\phi} \pi^{+}$$
$$LHCb$$

Both > 9σ significance. First observation!

Branching fraction

arXiv:1303.1737

=* - *+)

$$rac{\mathcal{B}(B_c^+
ightarrow J/\psi D_s^+)}{\mathcal{B}(B_c^+
ightarrow J/\psi \pi^+)} = 2.90 \pm 0.57 \pm 0.24$$

In agreement with:

- Naïve factorization $\sim \frac{Br(B \rightarrow \overline{D}^* D_s^+)}{Br(B \rightarrow \overline{D}^* \pi^+)}$ 2.90±0.42 (B^0), 1.58±0.34 (B^+) PDG12
- Prediction from <u>PRD61(2000)034012</u>

$$\frac{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{+})} = 2.37 \pm 0.56 \pm 0.10$$

Naïve factorization
$$\sim \frac{Br(B \to D^*D_s^{+})}{Br(B \to \overline{D}^*D_s^{+})}$$

2.20 ±0.35±0.62 (B^0), 2.07±0.52±0.52 (B^+)

Prediction from <u>PRD61(2000)034012</u>, <u>arXiv:hep-ph/0308214</u>

The fraction of polarization amplitude in the $B_c^+ \rightarrow J/\psi D_s^{*+}$

$$\frac{\Gamma_{\pm\pm}(B_c^+ \to J/\psi D_s^{*+})}{\Gamma_{\rm tot}(B_c^+ \to J/\psi D_s^{*+})} = (52 \pm 20)\%$$

Consistent with:

simple estimation of 2/3

• $B^0 \to D_s^{*+}\overline{D}^*$ assuming factorization

CLEO,PRD62(2000)112003, BaBar,PRD67(2003)092003

Expectation from $B_c^+ \rightarrow J/\psi l \nu$ decays <u>PRD68(2003)094020, PRD81(2010)014015</u>

B_c^+ mass measurement

arXiv:1303.1737

- Good opportunity for precise mass measurement using $B_c^+ \rightarrow J/\psi D_s^+$:
 - low Q-value, excellent mass resolution, low background ...
- Systematic uncertainty is highly correlated with $M(D_s)$

 $m_{B_c^+} = 6276.28 \pm 1.44 (ext{stat.}) \pm 0.36 (ext{syst.}) \, ext{MeV}/ ext{c}^2$

 $m_{B_c^+} - m_{D_s^+} = 4307.97 \pm 1.44 (\text{stat.}) \pm 0.20 (\text{syst.}) \,\text{MeV/c}^2$

Using latest D_s mass result <u>LHCb-PAPER-2013-011</u> (in preparation)

Most precise B_c^+ mass measurement!

- Consistent with LHCb result using $B_c^+ \rightarrow J/\psi \pi^+$
- New world average is calculated: $6275.14 \pm 1.30 \text{ MeV/c}^2$

Prospects

- There are still 2 fb⁻¹ data @ 8 TeV to be analysed! NB: $\sigma(\overline{b}b)$ also increases by $\sim 8/7 \Rightarrow$ more than doubled wrt 2011
- Precision measurement of B_c lifetime
 - $B_c^+ \rightarrow J/\psi \pi^+$: 1 fb⁻¹, improvement wrt world average expected
 - $B_c^+ \rightarrow J/\psi \ \mu \nu$: large BR, clean signal, yet only partial reconstruction
- New decay modes:
 - More possibilities with $\bar{b} \rightarrow \bar{c}W : J/\psi K^+K^-\pi^+, \psi(2S)\mu\nu, \dots$
 - New diagram $c \to sW$: eg. $B_s\pi^+$, with $B_s \to J/\psi\phi$ or $B_s \to D_s^-\pi^+$
 - Annihilation : $\overline{K}^{*0}K^+$, ...
- Search for excited B_c states: $B_c(2S) \rightarrow B_c^+ \pi^+ \pi^-$
- \blacksquare B_c production: differential cross-section down to zero p_T

Summary

- LHCb has successfully extended our knowledge on B_c meson
 - Production cross-section measured wrt B^+
 - World best mass measurement(s)
 - New decay channels observed
 - $J/\psi\pi^+\pi^-\pi^+$, $\psi(2S)\pi^+$, J/ψ $D_S^{(*)+}$
- With data analyses for the 2 fb⁻¹ @ 8 TeV actively onging, more excitement is expected in the near future!

