

Bottomonium decays at Belle

Y(5S) → η Y(1,2 S) Two-meson decays Hyperon and baryon production

Umberto Tamponi tamponi@to.infn.it

QWG2013, Beijing, China April 25th, 2013

INFN, Sezione di Torino University of Torino

Part I Y(5S) → η Y(1,2 S)

$Y(nS) \rightarrow \eta Y(mS)$

1

Y(5S)→ η**Y(1,2S)**

Preliminary. First shown at Moriond QCD 2012

Cross check: Y(2S) \rightarrow Y(1S) $\pi^+\pi^- + \eta \rightarrow \gamma\gamma$

 $Y(5S) \rightarrow \eta Y(1,2S)$

Preliminary. First shown at Moriond QCD 2012

 $BF[5S \rightarrow 1S] = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4}$ $BF[5S \rightarrow 2S] = (38 \pm 4 \pm 5) \times 10^{-4}$

 $BF(\eta)/BF(\pi^+\pi^-) = 0.16$ $BF(\eta)/BF(\pi^+\pi^-) = 0.48$

$Y(nS) \rightarrow \eta Y(mS)$: open questions

Part II

Two-meson decays

Y(1,2S)→ light hadrons: 77% rule

OZI- suppressed quarkonium decays: $(b\overline{b}), (c\overline{c}) \rightarrow ggg$

12% rule in charmonium: violated in some VT and VP final states ($\rho\pi$ puzzle)

$Y(1,2S) \rightarrow light hadrons$

Preliminary and Phys. Rev. D 86, 031102(R) (2012)

2 body decay

Pseudoscalar

 $\omega\pi^0$

ρπ

Y(1,2S)→ light hadrons

$Y(1,2S) \rightarrow 3, 4 \text{ bodies}$

Phys. Rev. D 86, 031102(R) (2012)

Branching ratios x 10⁶

-	Channel	$\mathcal{B}[\Upsilon(1S) \to f]$	$\mathcal{B}[\Upsilon(2S) \to f]$	Q	
-	$K^{*0}K^-\pi^+$	$4.42 \pm 0.50 \pm 0.58$	$2.32 \pm 0.40 \pm 0.54$	$0.52 \pm 0.11 \pm 0.14$	
	$\omega \pi^- \pi^+$	$4.46 \pm 0.67 \pm 0.72$	< 2.58	< 0.55	
	$\phi K^+ K^-$	$2.36 \pm 0.37 \pm 0.29$	$1.58 \pm 0.33 \pm 0.18$	$0.67 \pm 0.18 \pm 0.11$	
Prel.	$K_s K^+ \pi^-$	$1.59 \pm 0.33 \pm 0.18$	$1.14 \pm 0.30 \pm 0.13$	$0.72 \pm 0.24 \pm 0.09$	
Prel.	$\pi^-\pi^+\pi^0$	$2.14 \pm 0.72 \pm 0.34$	< 0.80	< 0.42	
Prel.	$\pi^-\pi^+\pi^0\pi^0$	$12.8 \pm 2.01 \pm 2.27$	$13.0 \pm 1.86 \pm 2.08$	$1.01 \pm 0.22 \pm 0.23$	

7

 $Y(1,2S) \rightarrow AT, VT, VP$

 $Y(1,2S) \rightarrow AT, VT, VP$

	<i>K</i> *				
	V/C ²	Υ (1S) → K_s K⁺ π⁻	~ 9 Y(2S)→ H	$K_{S}K^{+}\pi^{-}$	
	0 We	Preliminary		minary	
	0L/s1	4.4 σ		. Т. Т. Г.	
	0 0.8	1 1.2 1.4 1.6 Μ(K ⁺ π ⁻) (GeV/c ²)	0 [±] 0.8 1 1.2 M(K ⁺ π ⁻) (GeV	1.4 1.6 //c²)	
-	Channel	$\mathcal{B}[\Upsilon(1S) \to X]$	$\mathcal{B}[\Upsilon(2S) \to X]$	Q	
-	$\phi f_2'$	< 1.63	< 1.33	PP	
VT	ωf_2	< 1.79	< 0.57 B	ranching ratios	
	ρa_2	< 2.24	< 0.88 X	10 ⁶ Ç	2
	$K^{*0} \bar{K}_2^{*0}$	$3.02 \pm 0.68 \pm 0.34$	$1.53 \pm 0.52 \pm 0.19$	$0.50 \pm 0.21 \pm 0.07$	
-	$K_1(1270)^+K^-$	< 2.41	< 3.22		02
AP	$K_1(1400)^+K^-$	$1.02 \pm 0.35 \pm 0.33$	< 0.83	< 0.77	B
	$b_1(1235)^+\pi^-$	< 1.25	< 0.40		
	$K^{*0}(892)\bar{K}^{0}$	$2.92 \pm 0.85 \pm 0.37$	< 4.22	< 1.20	
VP	$K^{*-}(892)\bar{K}^{+}$	< 1.11	< 1.45	Č.	
	$\omega \pi^0$	< 3.90	< 1.68	- Mi	
	$ ho\pi$	< 3.68	< 1.16	a la	5

$\chi_{b}(1P) \rightarrow double charmonium$

Phys. Rev. D 85, 071102(R), (2012)

Chance to compare different predictions:

Light Cone formalism (LC): Phys. Rev. D 80, 094008 (2009) Erratum-ibid. D85 (2012) 119901 Potential QCD (pQCD) : Phys. Rev. D 72, 094018 (2005) Non relativistic QCD (NRQCD): Phys. Rev. D 84,094031(2011)

$\chi_{b}(1P) \rightarrow double charmonium$

 $\chi_{b1} \to \psi' \psi'$

 $\chi_{b2} \rightarrow \psi' \psi'$

12

3.3

2.2

2.1

17

12

 6.2×10^{-5}

 1.6×10^{-5}

Part III

Baryon production from Y(1,2S)

$Y(1,2S) \rightarrow \Lambda + X$

Hyperon production is **enhanced** in Y decays with respect to the nearby continuum and is **large**.

 $\begin{array}{rcl} \mathsf{BF}(\mathsf{Y}(\mathsf{1S}) \ \to \ \Lambda & \mathsf{+} & \mathsf{X} \end{array}) \ \sim \ \mathsf{10\%} \\ \mathsf{BF}(\mathsf{Y}(\mathsf{1S}) \ \to \ \Lambda \overline{\Lambda} & \mathsf{+} & \mathsf{X} \end{array}) \ \sim \ \mathsf{3\%} \end{array}$

Enhancement for baryon \mathcal{B} :

$$\frac{\sigma[e^+e^- \rightarrow Y(nS) \rightarrow \mathcal{B} + X]}{\sigma[e^+e^- \rightarrow qq^- \rightarrow \mathcal{B} + X]}$$

10

Production of anti-deuteron

From early studies by Argus \overline{d} can be produced in Y(nS) decays

 $\begin{array}{l} \mathsf{BF}[\mathsf{Y}(1S) \ \rightarrow \ d \ +X \] = & (\textbf{2.86} \pm 0.19 \pm 0.21) \ x \ \textbf{10}^{\textbf{-5}} \\ \mathsf{BF}[\mathsf{Y}(2S) \ \rightarrow \ d \ +X \] = & (\textbf{3.37} \pm 0.50 \pm 0.25) \ x \ \textbf{10}^{\textbf{-5}} \\ \sigma[e^+e^- \ \rightarrow \ q\overline{q} \ \rightarrow \ d \ +X \] < & \textbf{0.031 pb} \end{array} \right. \tag{PRD, 75 012009, (2007)}$

Coalescent production

p-n bound if $|p_p - p_n| < p_0 = 133 \text{ MeV/c}$

Search for H dibaryon

arXiv:1302.4028v1

Y(nS) can produce **bound baryon-baryon states** high yield of low momentum Λ .

 \rightarrow can the H⁰ be produced also?

Search for H dibaryon

arXiv:1302.4028v1

$Y(1,2S) \rightarrow exclusive \Lambda \Lambda + X$

X = combination of K⁺K⁻, $\pi^+\pi^-$, **p** \overline{p} and π^0

Max 9 bodies, Max one $\pi^0 \rightarrow 48$ channels

= 1

Y(1,2S)→ ex	clusive ΛΛ	+ X	
Preliminary	$\sum_{X} BF[Y(1S)]$	$\rightarrow X$] $\neq 2 \times 10^{-4}$	
The large inclusive BF is not due to simple, low multiplicity		$\sum_{X} BF[Y(2S)]$	$\rightarrow X$] $\simeq 0.7 \times 10^{-1}$
Channel	$\mathcal{B}[\Upsilon(1S) \to X] \ [\times 10^{-6}]$	$\mathcal{B}[\Upsilon(2S) \to X] \ [\times 10^{-6}]$	0
$\Lambda\bar{\Lambda} + \pi^+\pi^-$	$1.43 \pm 0.48 \pm 0.23$		
$\Lambda\bar{\Lambda} + K^+K^-$	$1.29 \pm 0.51 \pm 0.20$	$1.27 \pm 0.47 \pm 0.20$	$0.98 \pm 0.53 \pm 0.11$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)$	$6.99 \pm 1.28 \pm 1.11$	$3.81 \pm 0.97 \pm 0.61$	$0.55 \pm 0.17 \pm 0.06$
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^-$	$11.83 \pm 2.01 \pm 1.87$		
$\Lambda\bar{\Lambda} + \pi^+\pi^- p\bar{p}$	$2.99 \pm 0.86 \pm 0.47$		
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-)$	$13.14 \pm 2.36 \pm 2.10$	$4.72 \pm 1.64 \pm 0.75$	$0.36 \pm 0.14 \pm 0.04$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^-$	$18.99 \pm 3.60 \pm 3.04$		
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}$	$6.03 \pm 1.67 \pm 0.96$		
$\Lambda\bar{\Lambda} + \pi^+\pi^-2(K^+K^-)$		$2.93 \pm 1.49 \pm 0.47$	
$\Lambda\bar{\Lambda} + \pi^+\pi^- \pi^0$	$2.00 \pm 0.97 \pm 0.34$		
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-) \pi^0$	$13.86 \pm 3.96 \pm 2.35$	$9.76 \pm 3.06 \pm 1.66$	$0.70 \pm 0.30 \pm 0.08$
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^- \pi^0$	$18.26 \pm 4.68 \pm 3.11$		
$\Lambda\bar{\Lambda} + \pi^+\pi^- p\bar{p} \ \pi^0$	$5.85 \pm 2.35 \pm 0.99$		
$\Lambda\Lambda + 3(\pi^+\pi^-) \pi^0$	$52.83 \pm 8.93 \pm 9.07$	$23.35 \pm 5.97 \pm 4.02$	$0.44 \pm 0.14 \pm 0.05$
$\Lambda\Lambda + 2(\pi^+\pi^-)K^+K^-\pi^0$	$31.78 \pm 9.35 \pm 5.54$	$30.70 \pm 8.60 \pm 5.36$	$0.97 \pm 0.39 \pm 0.12$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}\ \pi^0$	$15.95 \pm 5.81 \pm 2.76$		

$Y(1,2S) \rightarrow exclusive \Lambda \Lambda + X$ New!

Preliminary

 2.2σ below 0.77

 2.8σ below 0.77

Compatible with 0.77

				•
Channel	$\mathcal{B}[\Upsilon(1S) \to X] \ [\times 10^{-6}]$	$\mathcal{B}[\Upsilon(2S) \to X] \ [\times 10^{-6}]$	Q	
$\Lambda\bar{\Lambda} + \pi^+\pi^-$	$1.43 \pm 0.48 \pm 0.23$			
$\Lambda\bar{\Lambda} + K^+K^-$	$1.29 \pm 0.51 \pm 0.20$	$1.27 \pm 0.47 \pm 0.20$	$0.98 \pm 0.53 \pm 0.11$	
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)$	$6.99 \pm 1.28 \pm 1.11$	$3.81 \pm 0.97 \pm 0.61$	$0.55 \pm 0.17 \pm 0.06$	
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^-$	$11.83 \pm 2.01 \pm 1.87$			
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}$	$2.99 \pm 0.86 \pm 0.47$			
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-)$	$13.14 \pm 2.36 \pm 2.10$	$4.72 \pm 1.64 \pm 0.75$	$0.36 \pm 0.14 \pm 0.04$	П
$\Lambda\Lambda + 2(\pi^+\pi^-)K^+K^-$	$18.99 \pm 3.60 \pm 3.04$			Г
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}$	$6.03 \pm 1.67 \pm 0.96$			
$\Lambda\bar{\Lambda} + \pi^+\pi^-2(K^+K^-)$		$2.93 \pm 1.49 \pm 0.47$		
$\Lambda\bar{\Lambda} + \pi^+\pi^- \pi^0$	$2.00 \pm 0.97 \pm 0.34$			
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-) \pi^0$	$13.86 \pm 3.96 \pm 2.35$	$9.76 \pm 3.06 \pm 1.66$	$0.70 \pm 0.30 \pm 0.08$	
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^- \ \pi^0$	$18.26 \pm 4.68 \pm 3.11$			
$\Lambda\bar{\Lambda} + \pi^+\pi^- p\bar{p} \ \pi^0$	$5.85 \pm 2.35 \pm 0.99$			
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-) \ \pi^0$	$52.83 \pm 8.93 \pm 9.07$	$23.35 \pm 5.97 \pm 4.02$	$0.44 \pm 0.14 \pm 0.05$	П
$\Lambda\Lambda + 2(\pi^+\pi^-)K^+K^- \pi^0$	$31.78 \pm 9.35 \pm 5.54$	$30.70 \pm 8.60 \pm 5.36$	$0.97 \pm 0.39 \pm 0.12$	Г
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}\ \pi^0$	$15.95 \pm 5.81 \pm 2.76$			J 16

$Y(1,2S) \rightarrow \Lambda \Lambda + X$ New!

Preliminary

Lowest n	nultiplicity : N = 4, B	F ~ 1.3 x 10 ⁻⁶		
BF(Y(1S) BF(Y(2S)	$\rightarrow \Lambda \overline{\Lambda}$) < 0.35 x 10 ⁻¹ $\rightarrow \Lambda \overline{\Lambda}$) < 0.03 x 10 ⁻¹	6 6		
Ω(6+6 - →	$\Lambda\Lambda)$ < 0.59 fb			_
Channel	$\mathcal{B}[\Upsilon(1S) \to X] \ [\times 10^{-6}]$	$\mathcal{B}[\Upsilon(2S) \to X] \ [\times 10^{-6}]$	Q	
$\Lambda\bar{\Lambda} + \pi^+\pi^-$	$1.43 \pm 0.48 \pm 0.23$			
$\Lambda\bar{\Lambda} + K^+K^-$	$1.29 \pm 0.51 \pm 0.20$	$1.27 \pm 0.47 \pm 0.20$	$0.98 \pm 0.53 \pm 0.11$	
$\Lambda\Lambda + 2(\pi^+\pi^-)$	$6.99 \pm 1.28 \pm 1.11$	$3.81 \pm 0.97 \pm 0.61$	$0.55 \pm 0.17 \pm 0.06$	
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^-$	$11.83 \pm 2.01 \pm 1.87$			
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}$	$2.99 \pm 0.86 \pm 0.47$			
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-)$	$13.14 \pm 2.36 \pm 2.10$	$4.72 \pm 1.64 \pm 0.75$	$0.36 \pm 0.14 \pm 0.04$	
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^-$	$18.99 \pm 3.60 \pm 3.04$			
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}$	$6.03 \pm 1.67 \pm 0.96$			
$\Lambda\bar{\Lambda} + \pi^+\pi^-2(K^+K^-)$		$2.93 \pm 1.49 \pm 0.47$		
$\Lambda\bar{\Lambda} + \pi^+\pi^- \pi^0$	$2.00 \pm 0.97 \pm 0.34$			
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-) \pi^0$	$13.86 \pm 3.96 \pm 2.35$	$9.76 \pm 3.06 \pm 1.66$	$0.70 \pm 0.30 \pm 0.08$	
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^- \pi^0$	$18.26 \pm 4.68 \pm 3.11$			
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}\ \pi^0$	$5.85 \pm 2.35 \pm 0.99$			
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-) \pi^0$	$52.83 \pm 8.93 \pm 9.07$	$23.35 \pm 5.97 \pm 4.02$	$0.44 \pm 0.14 \pm 0.05$	
$\Lambda \bar{\Lambda} + 2 (\pi^+ \pi^-) K^+ K^- \pi^0$	$31.78 \pm 9.35 \pm 5.54$	$30.70 \pm 8.60 \pm 5.36$	$0.97 \pm 0.39 \pm 0.12$	
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}\ \pi^0$	$15.95 \pm 5.81 \pm 2.76$			17

Baryon – anti-baryon events occur with high multiplicity

Baryon – anti-baryon pairs have low relative momentum \rightarrow they can interact

Summary

Quarkonium decays create a dense gluonic state:

- → First measurement of 16 exclusive modes Y(nS) → $\Lambda\Lambda$ +X
- → Data indicates a strong dependence of BF from the multiplicity
- → Stringent upper limits on non stable H dibaryon production

Is the NRQCD the best model that we have for the decays?

 $Y(1,2S) \rightarrow$ light hadrons: Ratio Q in agreement with theory

 $\chi(1P) \rightarrow$ double charmonium: Upper limits compatible with LC and NRQCD

$Y(nS) \to \eta \, Y(mS)$

→ What is happening above BB threshold?

- → See E.Eichten's talk
- \rightarrow For other Y(5S) results, see R. Mizuk's talk tomorrow

Backup

Belle

asymmetric e⁺e⁻ collider @Y(nS) energies (KEKB at KEK)

- Study of B mesons (~770 M of BB pairs at Belle, ~470 M at BaBar)
- World largest samples of Y(1,2 S)
- Unique sample of Y(5S) for Bs and quarkonium studies

- Complete knowledge of initial state
- Can compute Center-of-mass quantity
- Missing mass

Luminosity

$Y(nS) \rightarrow \eta Y(mS)$

Y(nS)	\rightarrow	ππ	E1E1 transition Y(mS)
			No Spin Flip
		0	E1M2 transition
Y(nS)	\rightarrow	η, π°	Y(MS) <u>Spin Flip</u>

The $\,\eta$ transition is predicted to be suppressed with respect to the dipion one

The η transition requires a spin flip

QCD **multipole expansion**: spin flip amplitude proportional to (m_b)⁻² Kuang Front.Phys.China 1, 19 (2006)

ion one h Φ_i MGE Φ_f

$Y(1,2S) \rightarrow VP \rightarrow 3, 4 \text{ bodies}$

$Y(1,2S) \rightarrow VP, AT, VT$

Preliminary

Channel			Υ	(1S)							$\Gamma(2S)$)			
	$N_{ m sig}$	$N_{ m sig}^{ m UP}$	ε	Σ	B		$\mathcal{B}^{\mathrm{UP}}$	$N^{ m sig}$	$N_{ m sig}^{ m UP}$	ϵ	Σ	B	$\mathcal{B}^{\mathrm{UP}}$	Q_{Υ}	Q^{UP}_Υ
$K^0_S K^+ \pi^-$	37.2 ± 7.6		22.96	6.2 1	$.59\pm0.3$	33 ± 0.18		39.5 ± 10.3		21.88	4.0	$1.14 \pm 0.30 \pm 0.13$		$0.72 \pm 0.24 \pm 0.09$	
$\pi^+\pi^-\pi^0\pi^0$	143.2 ± 22.4		11.20	7.1 1	2.8 ± 2.0	1 ± 2.27		260.7 ± 37.2		12.98	7.4	$13.0 \pm 1.86 \pm 2.08$		$1.01 \pm 0.22 \pm 0.23$	
$\pi^+\pi^-\pi^0$	25.5 ± 8.6		11.86	3.4 2	2.14 ± 0.7	2 ± 0.34		-2.1 ± 9.5	15	13.19		$-0.10 \pm 0.46 \pm 0.02$	2 0.80	$-0.05\pm 0.21\pm 0.02$	0.42
$K^{*0}(892)\bar{K}^{0}$	16.1 ± 4.7		16.23	4.4 2	0.92 ± 0.8	35 ± 0.37		14.7 ± 6.0	30	15.59	2.7	$1.79 \pm 0.73 \pm 0.30$	4.22	$0.61 \pm 0.31 \pm 0.12$	1.20
$K^{*-}(892)K^{+}$	2.0 ± 1.9	6.3	18.92	1.3 0	0.31 ± 0.3	30 ± 0.04	1.11	5.7 ± 3.4	13	18.77	2.0	$0.58 \pm 0.35 \pm 0.09$	1.45	$1.87 \pm 2.12 \pm 0.33$	5.52
$\omega \pi^0$	2.5 ± 2.1	6.8	2.11	1.6 1	$.32 \pm 1.1$	1 ± 0.14	3.90	0.1 ± 2.2	4.6	2.32	0.1	$0.03 \pm 0.68 \pm 0.01$	1.63	$0.02 \pm 0.50 \pm 0.01$	1.68
$ ho\pi$	11.3 ± 5.9	22	6.41	2.2 1	$.75\pm0.9$	01 ± 0.28	3.68	-1.4 ± 8.6	14	8.66		$-0.11 \pm 0.64 \pm 0.03$	3 1.16	$-0.06 \pm 0.38 \pm 0.02$	0.94

Channel				$\Upsilon(1$	S)						$\Upsilon(2$	S)			
	N^{sig}	$N_{ m sig}^{ m UP}$	ε	Σ	B		$\mathcal{B}^{\mathrm{UP}}$	N^{sig}	$N_{ m sig}^{ m UP}$	ε	Σ	B	$\mathcal{B}^{\mathrm{UP}}$	Q_{Υ}	$Q_\Upsilon^{\rm UP}$
$\phi K^+ K^-$	56.3 ± 8.7		47.9	8.6	2.36 ± 0.37	2 ± 0.29		58 ± 12		47.8	6.5	$1.58 \pm 0.33 \pm 0.18$		$0.67 \pm 0.18 \pm 0.11$	
$\omega \pi^+ \pi^-$	63.6 ± 9.5		15.7	8.5	4.46 ± 0.67	± 0.72		29 ± 12	51	15.9	2.5	$1.32 \pm 0.54 \pm 0.45$	2.58	$0.30 \pm 0.13 \pm 0.11$	0.55
$K^{*0}K^{-}\pi^{+}$	173 ± 20		28.7	11	4.42 ± 0.50	± 0.58		135 ± 23		27.5	6.4	$2.32 \pm 0.40 \pm 0.54$		$0.52 \pm 0.11 \pm 0.14$	
$\phi f_2'$	6.9 ± 3.9	15	48.8	2.1	0.64 ± 0.37	2 ± 0.14	1.63	8.3 ± 6.0	18	49.0	1.6	$0.50 \pm 0.36 \pm 0.19$	1.33	$0.77 \pm 0.70 \pm 0.33$	2.54
ωf_2	5.2 ± 4.0	13	17.7	1.5	0.57 ± 0.44	± 0.13	1.79	-0.4 ± 3.3	6.1	17.5		$-0.03 \pm 0.24 \pm 0.01$	0.57	$-0.06 \pm 0.42 \pm 0.02$	1.22
ρa_2	29 ± 11	49	17.4	2.7	1.15 ± 0.47	2 ± 0.18	2.24	10 ± 11	30	17.3	0.9	$0.27 \pm 0.28 \pm 0.14$	0.88	$0.23 \pm 0.26 \pm 0.12$	0.82
$K^{*0}K_{2}^{*0}$	42.2 ± 9.5		30.8	5.4	3.02 ± 0.68	± 0.34		32 ± 11		29.6	3.3	$1.53 \pm 0.52 \pm 0.19$		$0.50 \pm 0.21 \pm 0.07$	
$K_1(1270)^+K^-$	3.7 ± 4.9	13	23.6	0.8	0.54 ± 0.72	± 0.21	2.41	11.0 ± 4.4	26	23.5	1.2	$1.06 \pm 0.42 \pm 0.32$	3.22	$1.96 \pm 2.71 \pm 0.84$	4.73
$K_1(1400)^+K^-$	23.8 ± 8.2		27.3	3.3	1.02 ± 0.35	± 0.22		9.2 ± 8.2	24	26.9	0.5	$0.26 \pm 0.23 \pm 0.09$	0.83	$0.26 \pm 0.25 \pm 0.10$	0.77
$b_1(1235)^+\pi^-$	14.4 ± 6.9	28	16.7	2.4	0.47 ± 0.22	± 0.13	1.25	1.2 ± 3.5	13	17.0	0.2	$0.02 \pm 0.07 \pm 0.01$	0.40	$0.05 \pm 0.16 \pm 0.03$	0.35

$Y(1,2S) \rightarrow VT, AP \rightarrow 3 bodies$

Y(1,2S)→ VT, AP (observations)

 $\mathbf{Y(1,2S)} \rightarrow K^*K^0, \quad K^{*-}K^+$

Result statistically limited

Phys.Rev.D 84 091101(R)

$Y(2S) \rightarrow \eta Y(1S) @ BaBar and CLEO$

The Nagara event

E⁻ beam on emulsion target (Phys. Rev. Lett. 87, 212502)

Event	Nuclide	$B_{\Lambda\Lambda}$ (MeV)	$\Delta B_{\Lambda\Lambda}$ (MeV)	
1963	$^{10}_{\Lambda\Lambda}{ m Be}$	17.7 ± 0.4	4.3 ± 0.4	
1966	$^6_{\Lambda\Lambda}{ m He}$	10.9 ± 0.5	4.7 ± 1.0	
1991	$^{13}_{\Lambda\Lambda}{ m B}$	27.5 ± 0.7	4.8 ± 0.7	
NAGARA	$^6_{\Lambda\Lambda}{ m He}$	7.13 ± 0.87	1.0 ± 0.2	\blacktriangleleft $\land \land \land$ binding energy = 7 MeV
MIKAGE	$^6_{\Lambda\Lambda}{ m He}$	10.06 ± 1.72	3.82 ± 1.72	M(H) > 2223.7 MeV (90% CL)
DEMACHIYANAGI	$^{10}_{\Lambda\Lambda}{ m Be}$	11.90 ± 0.13	-1.52 ± 0.15	$2M(\Lambda) = 2231.36 \text{ MeV}$
HIDA	$^{11}_{\Lambda\Lambda}{ m Be}$	20.49 ± 1.15	2.27 ± 1.23	2m(11) = 220 motor motor
	$^{12}_{\Lambda\Lambda}\mathrm{Be}$	22.23 ± 1.15	_	
E176	$^{13}_{\Lambda\Lambda}\mathrm{Be}$	23.3 ± 0.7	0.6 ± 0.8	

H-dibaryon mass

$e^+e^- \rightarrow \Lambda \overline{\Lambda} + X$ (no π^0)

Channel	Significance	N_{meas}	NUL	σ_{sys} [%]	σ [fb]	σ_{UL} [fb]
$\Lambda \bar{\Lambda}$		0	2.08	15.70		0.59
$\Lambda\bar{\Lambda} + \pi^+\pi^-$	5.18 σ	7 ± 3.00		15.81	2.09 ± 0.90	
$\Lambda\bar{\Lambda} + K^+K^-$		2 ± 2.00	5.65	15.83		2.83
$\Lambda \bar{\Lambda} + p \bar{p}$		0	2.92	15.81		1.14
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)$	8.62 σ	$24\pm$ 5.00		15.90	10.05 ± 2.09	
$\Lambda\bar{\Lambda} + 2(K^+K^-)$		1 ± 1.00	4.36	15.98		4.43
$\Lambda\bar{\Lambda} + 2(p\bar{p})$		0	2.44	15.91		1.43
$\Lambda\bar\Lambda+\pi^+\pi^-K^+K^-$	10.18 σ	$26\pm~5.00$		15.94	$16.81 \pm \ 3.23$	
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}$	5.55 σ	8 ± 3.00		15.90	3.53 ± 1.32	
$\Lambda\bar{\Lambda} + K^+K^-p\bar{p}$		0	2.44	15.94		1.87
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-)$	11.37 σ	36 ± 6.00		16.03	25.72 ± 4.29	
$\Lambda \overline{\Lambda} + 3(K^+K^-)$		1 ± 1.00	4.36	16.31		11.57
$\Lambda\bar{\Lambda} + 3(p\bar{p})$		0	2.44	16.37		7.42
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^-$	9.68 σ	27 ± 5.00		16.12	$32.54{\pm}~6.03$	
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}$	7.09 σ	$11{\pm}~3.00$		16.04	$8.87{\pm}\ 2.42$	
$\Lambda\bar{\Lambda} + \pi^+\pi^- 2(K^+K^-)$		2 ± 1.00	4.91	16.22		10.30
$\Lambda\bar\Lambda+\pi^+\pi^-2(p\bar p)$		1 ± 1.00	4.36	16.09		5.53
$\Lambda\bar{\Lambda} + 2(K^+K^-)p\bar{p}$		0	2.44	16.25		5.65
$\Lambda\bar{\Lambda} + K^+K^-2(p\bar{p})$		0	2.44	16.29		6.14
$\Lambda\bar\Lambda+\pi^+\pi^-K^+K^-p\bar p$		0	2.44	16.18		4.44
Ξ+Ξ-		0	2.44	15.82		1.86
$\Xi^+\Xi^- + \pi^+\pi^-$		0	2.33	15.94		1.71
$\Omega^+\Omega^-$		0	2.44	15.91		7.04
$\Omega^+\Omega^- + \pi^+\pi^-$		0	2.44	16.06		6.94

$\mathbf{e}^+\mathbf{e}^- \to \Lambda \overline{\Lambda} + \mathbf{X} + \pi^0$

Channel	Significance	Nmeas	NUL	σ_{sys} [%]	σ [fb]	σ_{UL} [fb]
$\Lambda\bar{\Lambda} + \pi^0$		0	2.44	16.75	transferrar and	2.26
$\Lambda\bar{\Lambda} + \pi^+\pi^- \pi^0$	3.40σ	5 ± 2.00	9.63	16.89	4.49 ± 1.80	10.40
$\Lambda\bar{\Lambda} + K^+K^- \pi^0$	3.52σ	4 ± 2.00	7.92	16.96	5.07 ± 2.54	12.09
$\Lambda \bar{\Lambda} + p \bar{p} \pi^0$		0	2.44	16.90		2.76
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-) \pi^0$	7.03 σ	$21\pm$ 5.00		17.03	$26.95{\pm}\ 6.42$	
$\Lambda\bar{\Lambda} + 2(K^+K^-) \pi^0$		2 ± 1.00	4.98	17.32		17.78
$\Lambda\bar{\Lambda} + 2(p\bar{p}) \pi^0$		0	2.44	17.15		5.82
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^- \pi^0$	5.29 σ	12 ± 4.00		17.18	25.50 ± 8.50	
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}\ \pi^0$		3 ± 2.00	5.98	17.07		10.76
$\Lambda \bar{\Lambda} + K^+ K^- p \bar{p} \pi^0$		0	2.44	17.21		6.78
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-) \pi^0$	8.96σ	$25\pm$ 5.00		17.31	62.24 ± 12.45	
$\Lambda\bar{\Lambda} + 3(K^+K^-) \pi^0$		0	2.44	18.44		27.49
$\Lambda\bar{\Lambda} + 3(p\bar{p}) \pi^0$		0	2.44	21.17		84.13
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^- \pi^0$	6.94σ	16 ± 4.00		17.63	69.39 ± 17.35	
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}\ \pi^0$		1 ± 1.00	4.21	17.44		16.73
$\Lambda\bar{\Lambda} + \pi^+\pi^- 2(K^+K^-) \pi^0$		1 ± 1.00	4.36	17.91		32.11
$\Lambda\bar{\Lambda} + \pi^+\pi^- 2(p\bar{p}) \pi^0$		0	2.44	17.90		17.67
$\Lambda\bar{\Lambda} + 2(K^+K^-)p\bar{p} \ \pi^0$		0	2.44	18.56		29.79
$\Lambda\bar{\Lambda} + K^+K^-2(p\bar{p}) \pi^0$		0	2.44	19.03		38.86
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^-p\bar{p}\ \pi^0$		0	2.44	17.92		18.00
$\Xi^+\Xi^- + \pi^0$		0	2.44	16.90		4.71
$\Xi^+\Xi^-+\pi^+\pi^-\ \pi^0$		0	2.01	17.14		4.67
$\Omega^+\Omega^- + \pi^0$		0	2.44	17.06		17.86
$\Omega^+\Omega^-+\pi^+\pi^-\ \pi^0$		0	2.44	17.45		22.83