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Resolving the Puzzles of QuarkoniumTransitions

• Basic QCDME 

• Puzzles in hadronic transitions

– Two pion transitions

– Single hadron transitions

• Hadronic transitions above threshold

– Eta transitions

– Structure in two pion transitions

• Summary 
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QCD Multipole Expansion (QCDME)

• Basic Idea

– Analogous to the QED multipole expansion with gluons replacing photons.

– color singlet physical states means lowest order terms involve two gluon emission. So lowest 
multipoles E1 E1, E1 M1, E1 E2, ....

– factorize the heavy quark and light quark dynamics

– assume a model for the heavy quarkonium states Φi, Φf and a model for the intermediate 
states |KL>  hybrid states.

– use chiral effective lagrangians to parameterize the light hadronic system.
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10 May 15, 2010: Quarkonia Decays

Many authors contributed to the early development of
QCDME approach[101–103], but Yan[104] was the first to
present a gauge invariant formulation within QCD. For
a heavy QQ̄ bound state, a dressed (constituent) quark
(⌥̃(x, t)) is defined as

⌥̃(x, t) ⌅ U�1(x, t)⌥(x) (11)

where ⌥(x) is the usual quark field and U is defined as a
path ordered exponential along a straight line path from
X ⌅ (x1 + x2)/2 (the c.o.m. coordinate of Q and Q̄) to x,

U(x, t) = P exp
⌅
igs

� x

X
A(x⇥, t) · dx⇥

⇧
(12)

For gluon fields the color indices have been suppressed.
The dressed gluon field (Ã(x, t)) is defined by

Ãµ(x, t) ⌅ U�1(x, t)Aµ(x)U(x, t)� i

gs
U�1(x, t)�µU(x, t).

(13)
Now we can make the QCD multipole expansion in pow-
ers of (x�X) ·⌦ operating on the gluon field in exact
analogy with QED:

Ã0(x, t) = A0(X, t)� (x�X) ·E(X, t) + · · · ,

Ã(X, t) = �1
2
(x�X)⇤B(X, t) + · · · , (14)

where E and B are color-electric and color-magnetic fields,
respectively. The resulting Hamiltonian for a heavy QQ̄
system is then [104]

He�
QCD = H(0)

QCD + H(1)
QCD + H(2)

QCD, (15)

with H(0)
QCD taken as the zeroth order Hamiltonian even

though it does not represent free fields but the sum of the
kinetic and potential energies of the heavy quarks; and

H(1)
QCD ⌅ QaAa

0(X, t), (16)

where Qa the color charge of QQ̄ system (zero for color
singlets); and finally

H(2)
QCD ⌅ �da ·Ea(X, t)�ma ·Ba(X, t) + · · · , (17)

is treated perturbatively. di
a = gE

⌃
d3x⌥̃†(x�X)ita⌥̃

and mi
a = gM/2

⌃
d3x⌥̃†⌅ijk(x�X)j⇥kta⌥̃ are the color-

electric dipole moment (E1) and the color-magnetic dipole
moment (M1) of the QQ̄ system, respectively. Higher or-
der terms (not shown) give rise to higher order electric
(E2, E3, ...) and magnetic moments. (M2, ...)

Because H(2)
QCD in Eq. 17 couples color singlet to octet

QQ̄ states. The transitions between eigenstates |i� and |f�
of H(0)

QCD is at least second order in H(2)
QCD. The leading

order term is given by:
�
f
⇤⇤H2

1

Ei �H(0)
QCD + i�0 �H1

H2

⇤⇤i
⇥

= (18)
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⇥
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where the sum KL is over a complete set of color octet
QQ̄ states |KL� with associated energy EKL. Finally con-
nection is made to the physical hadronic transitions Eq.
10 by assuming a factorization of the heavy quark inter-
actions and the production of light hadrons. For example
the leading order E1-E1 transition the amplitude is:

M(�i ⇧ �f + h) = (19)
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�
h
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a

⇤⇤0
⇥

The allowed light hadronic final state h is determined by
quantum numbers of gluonic operator. The leading order
term E1-E1 in Eq.19 has CP=++ and L = 0, 2 and hence
couples to 2⌃ and 2K in I = 0 states. Higher order terms
(in powers of v) couple as follows: E1-M1 in O(v) with
(CP=--) couples to �; E1-M1, E1-E2 in O(v) and M1-
M1, E1-M2 in O(v2) with (CP=+-) couples to ⌃0 (isospin
breaking) and ⇧ (SU(3) breaking); and M1-M1, E1-E3, E2-
E2 (CP=++) are higher order corrections to the E1-E1
terms.

Applying this formulation to observed hadronic tran-
sitions requires addition phenomenological assumptions.
Following Kuang and Yan[104,108], the heavy QQ̄ bound
states spectrum of H(0)

QCD is calculated by solving the SE
with a given potential model. The intermediate octet QQ̄
states are modeled by the Buchmueller-Tye quark confin-
ing string (QCS) model[109]. Then chiral symmetry rela-
tions can be employed to parameterize the light hadronic
matrix element. The remaining unknown coe⇤cients in
the light hadron matrix elements are set by experiment
or calculated using a duality argument between the phys-
ical light hadron final state and associated two gluon final
state. A detailed discussion of all these assumptions can
be found in the previous QWG review[110].

For the most common transitions h = ⌃1 + ⌃2 the
e�ective chiral lagrangian form is [111]

g2
E

6
�
⌃1⌃2

⇤⇤Ea
i Eaj

⇤⇤0
⇥

=
1 

(2�1)(2�2)
[C1⇤ijq

µ
1 q2µ (20)

+ C2(q1kq2l + q1lq2k �
2
3
⇤ijq

µ
1 q2µ)]

If the polarization of the heavy QQ̄ initial and final states
is measured more information can be extracted form these
transitions and a more general form of Eq. 21 is appropri-
ate[112].

Important single light hadron transitions include the
⇧, ⌃0 and � transitions. The general form the light hadronic
factor for the eta transition which is dominantly (E1-M2)
is [117]

gegM

6
�
⇧
⇤⇤Ea

i ⇤iBa
j

⇤⇤0
⇥

= i(2⌃)3/2C3qj (21)

The ⌃0 transitions and ⇧ transitions are related by the
structure of chiral symetry breaking[114]. Many more de-
tails for these and other transitions within the context
of the Kuang-Yan model can be found in the review of
Kuang[117].
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⇧, ⌃0 and � transitions. The general form the light hadronic
factor for the eta transition which is dominantly (E1-M2)
is [117]

gegM

6
�
⇧
⇤⇤Ea

i ⇤iBa
j

⇤⇤0
⇥

= i(2⌃)3/2C3qj (21)

The ⌃0 transitions and ⇧ transitions are related by the
structure of chiral symetry breaking[114]. Many more de-
tails for these and other transitions within the context
of the Kuang-Yan model can be found in the review of
Kuang[117].

+ higher order multipole terms.

g

g
A

B

π

π

Model: Kuang & Yan [PR D24, 2874 (1981)]
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QCD Multipole Expansion (QCDME)

• Two pion transitions: (E1-E1), ...     CACB = +1

– nS -> mS transitions

• Higher order transitions: (E1-M2), (M1-M1), ...   CACB = +1

– Combine chiral symmetry and SU(3) symmetry breaking to relate  (π0,η,η’) transitions

• 3 gluons    CACB = -1    (𝜔, ...) 

3

D-waveS-wave

�(n3
IS1⌅n3

F S1 � �) = |C1|2G|f 111
nI0nF 0|2, (13)

where the phase-space factor G is [7]

G ⇥ 3

4

M�F

M�I

�3

⇤
K

⇧

1� 4m2
�

M2
��

(M2
�� � 2m2

�)2 dM2
��, (14)

d� ⇤ K

⇧

1� 4m2
�

M2
��

(M2
�� � 2m2

�)2 dM2
��, (15)

with

K ⇥
⌅

(MA + MB)2 �M2
��

⌅
(MA �MB)2 �M2

��

2MA
, (16)

and

fLPIPF
nI lInF lF

⇥
⇥

K

�
RF (r)rPF R�

KL(r)r2dr
�

R�
KL(r⇥)r⇥PIRI(r⇥)r⇥2dr⇥

MI � EKL
, (17)
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QCD Multipole Expansion (QCDME)

• When should the QCDME work well?

– Transitions between tightly bound quarkonium states

– Small radius (R << ΛQCD)

• bottomium 1S, 1P, 2S, 1D, 2P, 3S, ...

• charmonium 1S, 1P, ...

– Small contributions from excitations involving QCD additional degrees of freedom.

• This is essential to the factorization assumption !

– light quark pairs 

• D(*) D(*) thresholds in 1D to 3S region 

• B(*) B(*) thresholds in 4S region       

– gluonic excitations ?                    

4

DD, BB
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• Lattice calculation V(r), then SE

– What about the gluon and light quark degrees 
of freedom in QCD?

– Two thresholds

• Usual (Qq) + (qQ) decay thresholds

• Exciting the string - hybrids

– Hybrid states will appear in the spectrum 
associated with the potentials Πu, ...

– In the static limit this occurs at separation         
r ≈ 1.2 fm.  

• Between the 3S and 4S in (cc) system

• Just above the 5S in the (bb) system

• Should have expected trouble for QCDME 
above the 3S (cc) and 4S (bb)

5
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Fig. 3.6: The singlet static energy (quenched and unquenched data) from Ref. [51], see also [143]

2.3.3 The QCD static spectrum and mechanism of confinement18

The spectrum of gluons in the presence of a static quark–antiquark pair has been extensively studied with

high precision using lattice simulations. Such studies involve the calculation of large sets of Wilson loops

with a variety of different spatial paths. Projections onto states of definite symmetries are done, and the

resulting energies are related to the static quark–antiquark potential and the static hybrids potentials. With

accurate results, such calculations provide an ideal testing ground for models of the QCD confinement

mechanism.

The singlet static energy

The singlet static energy is the singlet static potential V (0)
s .

In the plot3.6, we report simulation results both with and without light quark–antiquark pair cre-

ation. Such pair creation only slightly modifies the energies for separations below 1 fm, but dramatically

affects the results around 1.2 fm, at a distance which is too large with respect to the typical heavy quarko-

nium radius to be relevant for heavy quarkonium spectroscopy. At finite temperature, the so-called string

breaking occurs at a smaller distance (cf. corresponding Section in Chapter 7,Media).

One can study possible nonperturbative effects in the static potential at short distances. As it has

already been mentioned in the ”static QCD potential” subsection, the proper treatment of the renormalon

effects has made possible the agreement of perturbation theory with lattice simulations (and potential

models) [78,88–92]. Here we would like to quantify this agreement assigning errors to this comparison.

In particular, we would like to discern whether a linear potential with the usual slope could be added to

perturbation theory. In order to do so we follow here the analysis of Ref. [90, 144], where the potential

is computed within perturbation theory in the Renormalon Subtracted scheme defined in Ref. [81]. The

comparison with lattice simulations [145] in Fig. 3.7 shows that nonperturbative effects should be small

and compatible with zero, since perturbation theory is able to explain lattice data within errors. The

systematic and statistical errors of the lattice points are very small (smaller than the size of the points).

Therefore, the main sources of uncertainty of our (perturbative) evaluation come from the uncertainty in

the value of ΛMS (±0.48 r−1
0 ) obtained from the lattice [146] and from the uncertainty in higher orders

in perturbation theory. We show our results in Fig. 3.7. The inner band reflects the uncertainty in ΛMS
whereas the outer band is meant to estimate the uncertainty due to higher orders in perturbation theory.

We estimate the error due to perturbation theory by the difference between the NNLO and NNNLO

evaluation. The usual confining potential, δV = σr, goes with a slope σ = 0.21GeV2. In lattice units

18Authors: N. Brambilla, C. Morningstar, A. Pineda
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LQCD calculation of static energy

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian ∇∇∇
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and Lξ and Lζ be components perpendicular to the molecular axis.

Writing L± = Lξ ± iLζ and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of Λ, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = Λ2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2Λ2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the Σ+
g level and 〈JJJ

2
g〉= 2 for theΠu and Σ

−
u levels.Wigner rotations are used as usual

to construct |LSJM;λη〉 states, where λ = JJJg · r̂rr and Λ = |λ |, then JPC eigenstates are
finally obtained from

|LSJM;λη〉+ ε|LSJM;−λη〉, (7)

where ε = 1 for Σ+ levels, ε = −1 for Σ− levels, and ε = ±1 for Λ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= ε(−1)L+Λ+1, C = ηε(−1)L+S+Λ. (8)

QCD Multipole Expansion (QCDME)



Estia Eichten                                                    QWG2013@IHEP, Beijing, China                                                 April 25,  2013

Two pion Transitions

• Comments:

– Chosing |C1| = 10.2 ± 0.2, |C2/C1| = 
1.25 ± 0.14 from the (cc) system. 

– Ratio of charged to neutral pion 
pair production consistent with I=0

– For the 3D2 (bb) state the 
theoretical total width is used.  

– The Υ(5S) transitions are 

strikingly large. Partial rates over 
100 times the rates of lower 
states.

– A number of quarkonium-like states 
have been first discovered in 
hadron transitions.  X(3872),  
Y(4260), ... and charged states     
Zb±(10,610),      Zb±(10,650), ...  
Discussion these states postponed.

6
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• The experimental transitions rates (for states below 
threshold) are in reasonable agreement with the simple 
KY model.

• Υ(3S) ->Υ(1S) ππ andΥ(4S) ->Υ(2S) ππ transitions

– Mππ distributions NOT the expected S-wave behaviour. 

– Transitions not expected to have any large violation of 
QCDME assumptions due to light quark pairs.            
[Unlike the Υ(5S) ->Υ(nS) ππ]

– Possible explanation - same as overlap dynamically 
suppressed  in  Υ(3S) -> χb(1P ) γ EM transitions.      

[The KY model has such a dynamical suppression.]

– Further study at Belle 2 would be useful. Look at 
polarization. 

7

BELLE

CLEO

FIG. 8: Plots overlaying projections of the data (points with error bars) and the fit result (his-

tograms) onto the Mππ and cos θX variables. The plots are summed over electrons and muons, but
are differentiated by pion charge. The neutral modes (open symbols, dashed lines) show only a
positive distribution in cos θX because the two pions are indistinguishable. For the charged modes

(solid symbols, solid lines) the angle is that of the π+.

and proportional to 1/
√

ai, where ai is the Monte Carlo phase space yield in bin i. Hence,

σi =
√

di + d̃2
i /ai.

The bins for which di = 0 require special treatment, and σi is modified appropriately. To
minimize the effect of such bins with zero yield, we sum over muon and electron final states.
This takes a weighted average over the distributions, rather than taking account of the

14

Unresolved Puzzles



• The ψ(4160) -> hc(1P) + π+π- transition.       

– ψ(4160)  is the 23D1 charmonium state.      

– Spin flip transition (E1-M1) expected to be too small to observe  but the transition is clearly seen.

– Gross violation of QCDME for hadronic transitions !

Estia Eichten                                                    QWG2013@IHEP, Beijing, China                                                 April 25,  2013

Unresolved Puzzles

8

T.K. Pedlar et.al [CLEO Collaboration]
PRL 107, 041803 (2011) [arXiv:1104.2025]



Estia Eichten                                                    QWG2013@IHEP, Beijing, China                                                 April 25,  2013

• The Υ(5S) -> Υ(2S) + π+π-  transitions  

– Υ(5S):  m=10,876 ± 11 MeV  and Γ= 55 ± 23 MeV

– BR(Υ(5S) -> Υ(2S) + π+π-) = (0.78 ± 0.13) % 

– π+π-  system   I= 0 
– total branching ratio for known hadronic transitions  (3.9 ± 0.7)% => Γ = 2.1 ± 0.9 MeV

– Clear violation of QCDME expectations.  (E1-M1/E1-E1) shoud be small but

• the transitions Υ(5S) -> hb(1P,2P) +  π+π-  requires a heavy quark spin flip  (M1)(E1)

– Striking failure of the QCDME above threshold

9

BELLE [arXiv:1103.3419]

(n=1) (n=2)

Unresolved Puzzles



• Eta transitions (E1-M2, M1-M1)                (CACB = +1)            O(v2)

– E1-M2 expected to dominate

– Factorization 

– Chiral symmetry:

– αEE  same factor of heavy quark dynamics as in two pion case. So cancels in ratio Rη/ππ at q2 = mη2

• Relation to other single pseudoscalar transitions
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Single Light Hadron Transitions

10

Hadronize

• two pion transitions (E1-E1)

– Factorization

– Chiral symmetry

– Explicit model - Kuang & Yan (PR D24, 2874 (1981)

Estia Eichten              7th International Workshop on Heavy Quarkonia: Fermilab          May 19, 2010                         

QCDME

7

g

g
A

B

π

π

�EE
AB

Hadronize

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = i⌃†⇥ r

2
· gE⇥

at
a⌃⇥ +

cF

mQ
⌃†⇥sQ · gtaB⇥

a⌃
⇥ + [Q� > Q̄] + · · ·

where

⌃⇥ = U�1⌃

taA⇥µ
a = U�1taAµ

aU �
i

g
U�1⌥µU

taA⇥µ
a = U�1taAµ

aU �
i

g
U�1⌥µU

g2
E

16
< B|rigtaGrjgtb|A > < ⇧�⇧⇥|Ei

aE
j

b|0 >

Mgg
if =

1

16
< B|ri⌅

aGrj⌅
a|A >

g2
E

6
< ⇧�⇧⇥|Tr(EiE

j
)|0 >

where

G = (EA �H0
NR)�1 =

⇥

KL

|KL >< KL|
EA � EKL

(QQ̄ octet)

fAB ⇥
⇥

KL

�
r2drRB(r)rRKL(r)

�
r2drRKL(r)rRA(r)

EA � EKL + i⇤

II. RADIATIVE TRANSITIONS

The spin averaged decay rate is given by

�(i
E1�⇤ f + ⇥) =

4�e2
Q

3
(2Jf + 1)SE

ifk
3|Eif |2 (1)

3

state (n⇥2s�+1SJ �), f , is:

�(i
M1�⇥ f + ⇥) =

4�e2
Q

3m2
Q

(2J ⇥ + 1)k3SM
if [Mif |]2 (8)

where the statistical factor SM
if = SM

fi is

SM
if = 6(2s + 1)(2s⇥ + 1)

⇤
⌥

⇧
J 1 J ⇥

s⇥ ⌥ s

⌅
�

⌃

2 ⇤⌥

⇧
1 1

2
1
2

1
2 s⇥ s

⌅
�

⌃

2

. (9)

For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS

g2
E

6
⇤⌅�(q1)⌅⇥(q2)|Ea

kEa
l |0⌅ =

⇤�⇥↵
(2⌃1)(2⌃2)

 
C1⇤klq

µ
1 q2µ + C2

�
q1kq2l + q1lq2k �

2

3
⇤kl (q1 · q2)

⇥⌦

where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ⇧(3770)⇥J/⇧ + ⌅+ + ⌅� with higher

precision, and the measured branching ratio is [29]

B(⇧(3770)⇥J/⇧ + ⌅+ + ⌅�) = (0.214± 0.025± 0.022)%. (10)

With the ⇧(3770) total width (??), the partial width is

�(⇧(3770)⇥J/⇧ + ⌅+ + ⌅�) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52+0.35
�0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9

S state -> S state

Phase Space Overlap - Buchmuller-Tye  string inspired model)

�(n3
IS1⌅n3

F S1 � �) = |C1|2G|f 111
nI0nF 0|2, (13)

where the phase-space factor G is [7]
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CHAPTER 4

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:

CSS′
4i
√

MSMS′

f2
π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
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7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the
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(4.143). After some algebra, we obtain [230, 231, 237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x · E|KL〉
〈

KL

∣∣∣∣
1

Ei − H(0)
QCD − iD0

∣∣∣∣K
′L′

〉
〈K ′L′|x · E|Φi〉, (4.165)

238

CHAPTER 4
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Single light hadronTransitions

• Ratios of transitions:

– The ratio of eta to two pion transitions at Mππ = Mη is independent of the details of the 

intermediate octet (QQ) states:

– The ratio of eta to neutral pion transitions are given by chiral perturbation theory,

– The present experimenta status is shown in Table 3.

12

Table 1: Partial widths for observed hadronic transitions. Simple overlaps
.

Transition G (GeV)7 ⇧f |r2|i⌃ >(GeV)�2 �(exp) (keV) �(overlap) (keV)
⇤(2S)⌅ J/⇤ + ⇥+⇥� 3.56⇥ 10�2 3.36 102.3 ± 3.4 input(|C1|)

⇥(2S)⌅ ⇥(1S)+⇥+⇥� 2.87⇥ 10�2 1.19 5.79 ± 0.49 5.9
⇥(3S)⌅ ⇥(1S)+⇥+⇥� 1.09 2.37⇥ 10�1 0.894 ± 0.084 12.9
⇥(3S)⌅ ⇥(2S)+⇥+⇥� 9.09⇥ 10�5 3.70 0.498 ± 0.065 0.26
⇥(4S)⌅ ⇥(1S)+⇥+⇥� 5.58 9.74⇥ 10�2 1.64 ± 0.25 19.9
⇥(4S)⌅ ⇥(2S)+⇥+⇥� 2.61⇥ 10�2 4.64⇥ 10�1 1.76 ± 0.34 2.1

�(n3S1 ⌅ m3S1 + �)
d�(n3S1 ⌅ m3S1 + ⇥+⇥�)/dM2

⇥⇥
=

32
81⇥

1
m2

Q

(
C3

C1
)2[frac((Mi + Mf )2 �M2

� )((Mi �Mf )2 �M2
� )4M2

i

�
(1� 4m2

⇥/M�)(M2
� � 2m2

⇥)2]

(8)
Now we have :

�(n3S1 ⌅ m3S1 + �)
�(n3S1 ⌅ m3S1 + ⇥+⇥�)

=
8⇥2

27
1

m2
Q

(
C3

C1
)2[

[(Mi + Mf )2 �M2
� )((Mi �Mf )2 �M2

� )]3/2

G
]

(9)
(M⇥⇥ = M�) (10)

2

[kinematic factor]



Estia Eichten                                                    QWG2013@IHEP, Beijing, China                                                 April 25,  2013

More puzzles

– Within the KY model the ratio Rη/ππ  is fixed for all transitions (n->m)  once one is fixed.        

From theΥ(2S) -> Υ(1S) transitions set the value of |C3/C1| = 0.143 ± 0.024 0.143 ± 0.024

– The eta transitions are very poorly described by this model if initial state is near or above 
threshold.
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Hadronic Transitions Above Threshold

• Quarkonium states above threshold have strong decays to pairs of heavy flavor 
mesons  H + H’

– The thresholds

14
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Hadronic Transitions Above Threshold

• The physical states are mixtures of the naive quarkonium (QQ) and the four quark 
states (QqqQ) 

– Above threshold the fraction of time the state is in the virtual four quark sector is large 
and therefore hadronic transitions from these system must be considered.  

– For hadronic transitions this is a critical difference.

– The four quark system dominated by the H+H’ configuration at least for large QQ 
separation.  For smaller QQ separation dynamics more complicated. 

– Need a model of the detailed contributions of various H+H’ states. (Cornell model for me). 

• Effect on the QCDME expansion

–  In the heavy quark symmetry limit, the H + H’ states would not violate the expectation  
that (E1-M1) and (E1-M2) transitions are suppressed. (general theorem)

– BUT the spin splitting within a HQS multiplet induces a large heavy quark spin flip 
contribution. Invalidates the QCDME.  No suppression.

– The general conclusion is not model dependent:  For H (1/2)− ground states (D,D*) and 
(B,B*).  In HQS limit HH, HH*+H*H, H*H* decay ratios are 1:4:7 (0.083: 0.33: 0.58)

• measured ratio at the Υ(5S):  0.096:0:24.66 (B)  0.0:0.08;0.92 (Bs)

• measured ratios in the charm threshold region studied in detail (see figure)

• Eta transitions not suppressed relative to two pion transitions above threshold.
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Hadronic Transitions Above Threshold

• Charm threshold region has very large induced HQS breaking effects

16

Evidence of strong
production of D(*) DP
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Structure in two pion transitions

• What happened to decays into heavy-light P state H(1P) jP=(1/2, 3/2)+ and a ground 
state H(1S) jP=(1/2)- ?

– For the bottomium region the narrow B(1P) states have thresholds in the Υ(6S) while the 

influence of the wide states entend into the Υ(5S) region and above.
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Structure in two pion transitions

– For the charm threshold region the narrow D(1P) states have thresholds around 4260 MeV to 
the ψ(4S) region, while influence of the wide states extends down to the ψ(3S)
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Structure in two pion transitions

– S-wave decays should be very strong near threshold.   D-wave decays weaker.
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Structure in two pion transitions

• For example, the Υ(5S) has a B(1/2-) + BP(1/2+) component.  The BP(1/2+) state decays 

rapidly into a B meson and pion, leaving a B(1/2-) + B(1/2-)  nearly at rest.  They then 
recombine into the final (Υ or hb) and pion.  

– Both the Υ(5S) -> Bp(0+) B* and  Bp(0+) -> π B decays are S-wave

– The analogy in the charmonium system is the structure seen in the ψ(4160) -> π π J/ψ transition.

– This provides a dynamical mechanism for the Meson Loop and ISPE models.     

20

Υ(5S)

Υ or h

π+

π−
BP(0+)+

B*0

B0Υ(5S) -> Bp(0+) B* -> π B B*                                    

  and        Bp(1+) B   -> π B B*
  and        Bp(1+) B* -> π B*B* 

ISPE Model:    [1303.6842] and 
references therein    

Meson Loop Models:    
[1303.6355}, [1304.4458]  and 
references therein                                      
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Structure in two pion transitions

– Chen, Lui and Matsuki applied the ISPE model to the Y(4260) -> π π ψ  transition.

– They were able to reproduce the structure observed in those transitions.

– Thus the nature (cusp or molecule) of the Z+(10610), Z+(10650)+ and newly observed Z+(3900)  
state is  open.

– There is an extraordinary rich structure of decays into a heavy-light P state Hq(1P) jP=(1/2, 3/2)+ 
and a ground state Hq(1S) jP=(1/2)- (q=u,d,s) at and above the ψ(4S) in the charm sstem and Υ(6S) 

in the bottom system.

– The study of these channels will provide detailed information about the decay strengths and the 
associated hadronic transitions.
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D.Y. Chen, X, Lui and T. Matsuki 
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Summary

• The hadronic transitions for states below strong decay threshold are well 
described by the usual QCD Multipole Expansion except for:

– The Υ(3S) ->Υ(1S) ππ andΥ(4S) ->Υ(2S) ππ transitions.   Here It is not understood why 

the Mππ distributions not the expected S-wave behaviour.

• Above heavy flavor production threshold the QCDME fails.  

– The factorization assumption fails.  Heavy quark and light hadronic dynamics interact 
strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium 
wavefunctions. Magnetic transitions not surpressed.

– A new mechanism for hadronic transitions is required.to explain the large rates

• For 1-- quarkonium states above threshold the opening of strong S-wave decays 
into a ground state ½- (0-, 1-)  and a excited P-wave ½+ (0+, 1+)  heavy-light mesons 
needs to be taken into account to understand the structure of hadronic 
transitions.  This occurs around the

– ψ(2D) in the (cc) system.

– Υ(5S) in the (bb) system

• With BES III and LHCb and soon BELLE 2.  I expect much progress in 
understanding hadronic transitions in the near future.  
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Zb±(10,610)  and Z b± (10,650)

• BELLE has observed two new charged states in the Υ(5S) -> Υ(nS) + π+π- (n=1,2,3)   and the 

Υ(5S) -> hb(nP) + π+π- (n=1,2) transitions   [arXiv:1105.4583]

• Υ(5S) -> Zb++ π- and  Zb -> hb(nP) + π+ .  

• Explicitly violates the factorization assumption of the QCDME. 

• Clear evidence for four quark molecular states if confirmed 

• The Zb
± (10610) is a narrow state (Γ= 15.6 ± 2.5 MeV) at the BB* threshold (10605).

• The Zb
± (10650) is a narrow state (Γ= 14.4 ± 3.2 MeV) at the B*B* threshold (10650).
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