Double-Parton

Fragmentation in

Quarkonium Production

Adam Leibovich
PITT PACC, University of Pittsburgh

Work done with:
Sean Fleming, Tom Mehen, Ira Rothstein I207.2578, I30I. 3822

Quarkonium 2013, IHEP, Beijing, April 22, 2013

Outline

- The different expansions
- Fragmentation: single and double
- Matching, running, matching...
- Conclude

Expansions

- QCD - expansion in α_{s}

- NRQCD - expansion in v

- SCET - expansion in $\frac{m_{Q}}{p_{\perp}}$

Problem with CSM

(expansion in α_{s})

Problem fixed?

Problem fixed?

(expansion in v)

Quarkonium Fragmentation

- J / ψ Production at large p_{\perp} in hadronic collisions

$$
\hat{\sigma}\left(a+b \rightarrow c \bar{c}\left({ }^{3} S_{1}^{[8]}\right)+X\right)\langle 0| \mathcal{O}^{J / \psi}\left({ }^{3} S_{1}^{[8]}\right)|0\rangle \text { is special }
$$

Fragmentation: $\frac{d \hat{\sigma}}{d p_{\perp}}(i j \rightarrow J / \psi+X)_{\text {octet }}$

$$
\xrightarrow{p_{\perp \rightarrow \infty}} \int d z \frac{d \hat{\sigma}}{d p_{\perp}}\left(i j \rightarrow g\left(p_{\perp} / z\right)+X\right) D_{g \rightarrow J / \psi}(z)
$$

Quarkonium Fragmentation

Sum logs: run from p_{\perp} to $2 m_{c}$

$$
\begin{gathered}
\mu \frac{d D_{g \rightarrow \psi_{Q}}}{d \mu}(z, \mu)=\frac{\alpha_{s}(\mu)}{\pi} \int_{z}^{1} \frac{d y}{y} P_{g g}(y) D_{g \rightarrow \psi_{Q}}\left(\frac{z}{y}, \mu\right) \\
P_{g g}(y)=6\left[\frac{y}{(1-y)_{+}}+\frac{1-y}{y}+y(1-y)+\frac{33-2 n_{f}}{36} \delta(1-y)\right] \\
D_{g \rightarrow \psi^{\prime}}\left(z, 2 m_{c}\right)=\frac{\pi \alpha_{s}\left(2 m_{c}\right)}{24 m_{c}^{3}} \delta(1-z)\langle 0| \mathcal{O}_{8}^{\psi^{\prime}}\left({ }^{3} S_{1}\right)|0\rangle
\end{gathered}
$$

Improved Factorization Approach

Kang, Qiu \& Sterman; Fleming, Leibovich, Mehen \& Rothstein

Improved NRQCD factorization:
First organizes $\frac{d \sigma}{d p_{\perp}}$ in powers of $\frac{\left(2 m_{c}\right)}{p_{\perp}}$
Then organizes $\frac{d \sigma}{d p_{\perp}}$ in powers of v
Systematic perturbative expansion in $\alpha_{s}\left(p_{\perp}\right)$ and $\alpha_{s}\left(2 m_{c}\right)$

Then we have to consider to what order we work in for each parameter

Need for SCET

- NRQCD doesn't contain correct d.o.f.
- At endpoint need both soft and collinear modes -NRQCD only has soft d.o.f
- SCET couples collinear and soft d.o.f.
- Was created to sum Sudakov logarithms
- Expansion in α_{s} and $\lambda \sim p_{\perp} / p^{-}$
- Couple NRQCD and SCET for corners of phase space

SCET Intro

- Systematic expansion in $\lambda \sim p_{\perp} / p^{-}$
- Degrees of freedom:
-Collinear particles with $p=Q\left(\lambda^{2}, 1, \lambda\right)$
- Soft particles with $p=Q(\lambda, \lambda, \lambda)$
-Ultrasoft particles with $p=Q\left(\lambda^{2}, \lambda^{2}, \lambda^{2}\right)$
- By using gauge invariance, operators constrained
- Field redefinition allows leading order factorization theorems

Gauge invariance restrictions

$$
\begin{aligned}
& W=\mathrm{P} \exp \left(i g \int_{-\infty}^{x} d s \bar{n} \cdot A_{n}(s \bar{n})\right) \\
& \chi^{\dagger} D_{\perp} \psi \rightarrow \chi^{\dagger} W D_{\perp} W^{\dagger} \psi
\end{aligned}
$$

Factorization

$$
\mathcal{L}=\bar{\xi}_{n, p^{\prime}}\{i n \cdot D_{c}+\underbrace{g n \cdot A_{u}}+i D_{c}^{\perp} \frac{1}{i \bar{n} \cdot D_{c}} i \not D_{c}^{\perp}\} \frac{\bar{n}}{2} \xi_{n, p}
$$

Only coupling to ultrasoft sector
Introduce usoft Wilson line: $\quad Y_{n}(x)=\mathrm{P} \exp \left[\int_{-\infty}^{x} d s n \cdot A_{u s}(s n)\right]$
Field redef: $\quad \xi_{n, p}=Y_{n} \xi_{n, p}^{(0)}, \quad A_{n, p}^{\mu}=Y_{n} A_{n, p}^{(0) \mu} Y_{n}^{\dagger}, \quad W_{n}=Y_{n} W_{n}^{(0)} Y_{n}^{\dagger}$
Ultrasoft decouples: $\quad \mathcal{L} \rightarrow \bar{\xi}_{n, p^{\prime}}\left\{i n \cdot D_{c}+0+i D_{c}^{\perp} \frac{1}{i \bar{n} \cdot D_{c}} i D_{c}^{\perp}\right\} \frac{\bar{n}}{2} \xi_{n, p}$

In Pictures

Heavy/soft modes
do not interact with collinear modes
\Rightarrow Rate factors!

Quarkonium Factorization in SCET

Quarkonium production at large p_{\perp} in hadron collisions

$$
p_{\perp} \sim \sqrt{\hat{s}} \gg m_{Q}
$$

I. At $\mu \sim p_{\perp}$ match QCD onto massive SCET

Expansion in $\alpha_{s}\left(p_{\perp}\right)$
Power counting in $\lambda \sim\left(2 m_{Q}\right) / p_{\perp}$
2. Factor rate
3. Run to $\mu \sim m_{Q}$
4. Match onto NRQCD

Expansion in $\alpha_{s}\left(2 m_{Q}\right)$
Power counting in v

Quarkonium Factorization in SCET

We have multiple directions

$$
n^{\mu}=(1,0,0,1), \bar{n}^{\mu}=(1,0,0,-1), n^{\prime \mu}=(\cosh y, 1,0, \sinh y)
$$

$$
p_{n} \approx \frac{Q}{2} n^{\mu} p_{\bar{n}} \approx \frac{Q}{2} \bar{n}^{\mu} \quad p_{n^{\prime}} \approx \frac{p_{\perp}}{2} n^{\prime \mu}
$$

Integrate out X

Quarkonium Factorization in SCET

We have multiple directions

$$
n^{\mu}=(1,0,0,1), \bar{n}^{\mu}=(1,0,0,-1), n^{\prime \mu}=(\cosh y, 1,0, \sinh y)
$$

$$
p_{n} \approx \frac{Q}{2} n^{\mu} \quad p_{\bar{n}} \approx \frac{Q}{2} \bar{n}^{\mu} \quad p_{n^{\prime}} \approx \frac{p_{\perp}}{2} n^{\prime \mu}
$$

Gives proton PDF

Gives antiproton PDF

Integrate out X

Matching

Example: $q \bar{q} \rightarrow Q \bar{Q}$

Give different fragmentation functions

$$
\begin{gathered}
\frac{d^{2} \sigma}{d p_{\perp}^{2} d y} \propto \int d x_{1} d x_{2} f_{q / p}\left(x_{1}\right) f_{\bar{q} / \bar{p}}\left(x_{2}\right)\left[\hat{\sigma}^{\beta}\left(x_{1}, x_{2}, p_{\perp}, y\right) \otimes D_{Q \bar{Q} / \beta}\right] \\
D_{Q \bar{Q} / g}(z) \quad D_{Q \bar{Q} / Q \bar{Q}}(u, v, z)
\end{gathered}
$$

Matching

Example: $q \bar{q} \rightarrow g$ at $O(1)$

$\langle 0| \operatorname{Tr}\left\{\left(B_{n, w_{1}^{\prime}}^{a \mu}\right) \mathcal{P}_{H}^{\dagger}\left(p_{\perp}, y\right) \mathcal{P}_{H}\left(p_{\perp}, y\right)\left(B_{n_{n}, w_{2}^{\prime}}^{a \rho}\right)\right\}|0\rangle$

$$
=-\frac{\omega_{+}^{\prime 2}}{2} \int_{0}^{1} \frac{d z}{z} \delta\left(\omega_{-}^{\prime}\right) \delta\left(\omega_{+}^{\prime}-\frac{2 \bar{n}^{\prime} \cdot p}{z}\right) D_{H / g}(z)
$$

Matching

Example: $q \bar{q} \rightarrow Q \bar{Q}$ at $O\left(\lambda^{2}\right)$
(PF)

$$
\begin{gathered}
\langle 0| \bar{\chi}_{n^{\prime}, \omega_{2}^{\prime}} \Gamma^{i(\mu)}\left\{1, T^{A}\right\} \chi_{n^{\prime}, \omega_{1}^{\prime}} \mathcal{P}_{n^{\prime}, Q}^{H} \bar{\chi}_{n^{\prime}, \omega_{4}^{\prime}} \Gamma_{(\mu)}^{i}\left\{1, T^{A}\right\} \chi_{n^{\prime}, \omega_{3}^{\prime}}|0\rangle \\
=\delta\left(\omega_{1}^{\prime}-\omega_{2}^{\prime}+\omega_{3}^{\prime}-\omega_{4}^{\prime}\right) \int \frac{d z}{z} d u d v \delta\left(z-\frac{\bar{n}^{\prime} \cdot p}{\omega_{1}^{\prime}-\omega_{2}^{\prime}}\right) \\
\times \delta\left(v-1-z \frac{\omega_{2}^{\prime}}{\bar{n}^{\prime} \cdot p}\right) \delta\left(u-z \frac{\omega_{4}^{\prime}}{\bar{n}^{\prime} \cdot p}\right) D_{i\{1,8\}}^{Q \bar{Q}}(u, v, z)
\end{gathered}
$$

$$
\Gamma^{i(\mu)}=\frac{1}{2}\left\{\bar{\eta}^{\prime \prime}, \bar{\eta}^{\prime} \gamma^{5}, \bar{\eta}^{\prime} \gamma_{\perp}^{\mu}\right\}
$$

$$
\bar{n}^{\prime} \cdot p_{1}=u \bar{n}^{\prime} \cdot p_{Q \bar{Q}} \quad \bar{n}^{\prime} \cdot p_{4}=v \bar{n}^{\prime} \cdot p_{Q \bar{Q}} \quad \bar{n}^{\prime} \cdot p_{H}=z \bar{n}^{\prime} \cdot p_{Q \bar{Q}}
$$

Running

Essentially Efremov-Radyushkin-Brodsky-Lepage evolution in u, v

$$
\mu^{2} \frac{d}{d \mu^{2}} D_{Q \bar{Q} \rightarrow H}^{[1]}(u, v, z ; \mu)=\int_{0}^{1} d w V(u, w ; \mu) D_{Q \bar{Q} \rightarrow H}^{[1]}(w, v, z ; \mu)
$$

DGLAP in z
$\mu^{2} \frac{d}{d \mu^{2}} D_{Q \bar{Q} \rightarrow H}^{[1]}(u, v, z ; \mu)=\int_{0}^{1} d x P_{Q \bar{Q}[1] \rightarrow Q \bar{Q}[8]}(x ; \mu) D_{Q \bar{Q} \rightarrow H}^{[8]}(w, v, z / x ; \mu)$

$$
\bar{n}^{\prime} \cdot p_{1}=u \bar{n}^{\prime} \cdot p_{Q \bar{Q}} \quad \bar{n}^{\prime} \cdot p_{4}=v \bar{n}^{\prime} \cdot p_{Q \bar{Q}} \quad \bar{n}^{\prime} \cdot p_{H}=z \bar{n}^{\prime} \cdot p_{Q \bar{Q}}
$$

Matching onto NRQCD

At scale $\sim 2 m_{Q}$ integrate out heavy quark mass

- Use boosted NRQCD

Decompose momentum in quarkonium frame

$$
\begin{gathered}
p^{\mu}=m_{Q} v^{\mu}+k^{\mu} \\
v^{\mu}=\frac{1}{2} \frac{Q}{2 m_{Q}} n^{\prime \mu}+\frac{1}{2} \frac{m_{Q}}{Q} \bar{n}^{\prime \mu} \quad Q=2 p_{\perp} \cosh y
\end{gathered}
$$

SCET scaling

$$
\begin{gathered}
p^{\mu}=\tilde{p}^{\mu}+r^{\mu} \Longrightarrow \bar{n}^{\prime} \cdot \tilde{p} \rightarrow m_{Q} \bar{n}^{\prime} \cdot v \\
r^{\mu}=\tilde{r}^{\mu}+r_{s}^{\mu}=\tilde{r}^{\mu}+k^{\mu}
\end{gathered}
$$

Matching onto NRQCD

At scale $\sim 2 m_{Q}$ integrate out heavy quark mass

- Use boosted NRQCD
- NRQCD inherits Wilson lines (cancels for color-singlet)

$$
\bar{\chi}_{n^{\prime}, \omega_{2}} \Gamma^{a}\left\{1, T^{A}\right\} \chi_{n^{\prime}, \omega_{1}}=\mathcal{C}_{a} \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{1}\right) \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{2}\right) \chi_{v}^{\dagger} W_{v} \tilde{\Gamma}^{a}\left\{1, T^{A}\right\} W_{v}^{\dagger} \psi_{v}+\text { h.c. }
$$

Matching onto NRQCD

At scale $\sim 2 m_{Q}$ integrate out heavy quark mass

- Use boosted NRQCD
- NRQCD inherits Wilson lines (cancels for color-singlet)

$$
\bar{\chi}_{n^{\prime}, \omega_{2}} \Gamma^{a}\left\{1, T^{A}\right\} \chi_{n^{\prime}, \omega_{1}}=\mathcal{C}_{a} \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{1}\right) \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{2}\right) \chi_{v}^{\dagger} W_{v} \tilde{\Gamma}^{a}\left\{1, T^{A}\right\} W_{v}^{\dagger} \psi_{v}+\text { h.c. }
$$

Matching onto NRQCD

At scale $\sim 2 m_{Q}$ integrate out heavy quark mass

- Use boosted NRQCD
- NRQCD inherits Wilson lines (cancels for color-singlet)

$$
\bar{\chi}_{n^{\prime}, \omega_{2}} \Gamma^{a}\left\{1, T^{A}\right\} \chi_{n^{\prime}, \omega_{1}}=\mathcal{C}_{a} \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{1}\right) \delta\left(m_{Q} \bar{n}^{\prime} \cdot v-\omega_{2}\right) \chi_{v}^{\dagger} W_{v} \tilde{\Gamma}^{a}\left\{1, T^{A}\right\} W_{v}^{\dagger} \psi_{v}+\text { h.c. }
$$

NRQCD gluons

Matching onto NRQCD

At scale $\sim 2 m_{Q}$ integrate out heavy quark mass

- Use boosted NRQCD
- NRQCD inherits Wilson lines (cancels for color-singlet)

$$
\begin{aligned}
& D_{i,\{1,8\}}^{Q \bar{Q}}(u, v, z) \rightarrow C_{i} \delta(1-z) \delta\left(u-\frac{1}{2}\right) \delta\left(v-\frac{1}{2}\right) \\
& \quad \times\langle 0| \chi_{v}^{\dagger} W \Gamma^{i}\left\{1, T^{A}\right\} W^{\dagger} \psi_{v} \mathcal{P}^{H_{v}} \psi_{v}^{\dagger} W \Gamma^{i}\left\{1, T^{A}\right\} W^{\dagger} \chi_{v}|0\rangle
\end{aligned}
$$

- If ignore running, recover NRQCD results

Conclusions

- Can prove factorization using SCET
- Power suppressed fragmentation functions
- Interesting running
- Maybe important phenomenologically

Backup slides

Anomalous Dimensions

$$
\begin{aligned}
& \gamma_{11,11}=-\frac{\alpha_{s} C_{F}}{\pi} \delta\left(1-z / z^{\prime}\right)\left(3 \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right)\right. \\
&+\delta\left(v-v^{\prime}\right)\left\{\theta\left(u^{\prime}-u\right) \frac{u}{u^{\prime}}\left[\frac{1}{\left(u^{\prime}-u\right)_{+}}+1\right]+\theta\left(u-u^{\prime}\right) \frac{\bar{u}}{\bar{u}^{\prime}}\left[\frac{1}{\left(u-u^{\prime}\right)_{+}}+1\right]\right\} \\
&\left.+\delta\left(u-u^{\prime}\right)\left\{\theta\left(v^{\prime}-v\right) \frac{v}{v^{\prime}}\left[\frac{1}{\left(v^{\prime}-v\right)_{+}}+1\right]+\theta\left(v-v^{\prime}\right) \frac{\bar{v}}{\bar{v}^{\prime}}\left[\frac{1}{\left(v-v^{\prime}\right)_{+}}+1\right]\right\}\right)
\end{aligned}
$$

$\gamma_{21,21}=\gamma_{11,11}$,

$$
\begin{aligned}
&\left.\begin{array}{rl}
\gamma_{18,11}=- & \frac{\alpha_{s}}{\pi} \theta(1
\end{array}-z / z^{\prime}\right)\left(\frac{z}{z^{\prime}}\right)^{2}\left\{\left[\frac{u v^{\prime}+v u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
&+\left[\frac{\bar{u} \bar{v}^{\prime}+\bar{v} \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right) \\
&-\left[\frac{u \bar{v}^{\prime}+\bar{v} u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
& \quad-\left[\frac{\bar{u} v^{\prime}+v \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{\left.\overline{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right\},} \\
& \begin{aligned}
& \gamma_{18,21}=- \frac{\alpha_{s}}{\pi} \theta\left(1-z / z^{\prime}\right)\left(\frac{z}{z^{\prime}}\right) \frac{1-z / z^{\prime}}{2}\left[\frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
&+\frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)+\frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
&\left.+\frac{1}{\bar{u}^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right], \\
& \gamma_{28,11}=\gamma_{18,21}, \quad \gamma_{28,18}=\gamma_{18,28} \\
& \gamma_{28,21}=\gamma_{18,11 .} \quad \gamma_{28,28}=\gamma_{18,18 .} .
\end{aligned}
\end{aligned}
$$

Anomalous Dimensions

$$
\begin{aligned}
& \gamma_{18,18}=-3 \frac{\alpha_{s} C_{F}}{\pi} \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right) \delta\left(1-z / z^{\prime}\right) \\
&+\frac{\alpha}{\pi} \frac{1}{2 N_{c}} \delta\left(v-v^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(u^{\prime}-u\right) \frac{u}{u^{\prime}}\left(\frac{1}{\left(u^{\prime}-u\right)_{+}}+1\right)+\left(u \leftrightarrow \bar{u}, u^{\prime} \leftrightarrow \bar{u}^{\prime}\right)\right] \\
&+ \frac{\alpha_{s}}{\pi} \frac{1}{2 N_{c}} \delta\left(u-u^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(v^{\prime}-v\right) \frac{v}{v^{\prime}}\left(\frac{1}{\left(v^{\prime}-v\right)_{+}}+1\right)+\left(v \leftrightarrow \bar{v}, v^{\prime} \leftrightarrow \bar{v}^{\prime}\right)\right] \\
&-\frac{\alpha_{s}}{\pi}\left(\frac{z}{z^{\prime}}\right)^{2}\left\{\frac{N_{c}^{2}-2}{2 N_{c}}\left[\frac{u v^{\prime}+v u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
&+\frac{N_{c}^{2}-2}{2 N_{c}}\left[\frac{\bar{u} \bar{v}^{\prime}+\bar{v} \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right) \\
&+\frac{1}{N_{c}}\left[\frac{u \bar{v}^{\prime}+\bar{v} u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
&\left.+\frac{1}{N_{c}}\left[\frac{\bar{u} v^{\prime}+v \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{2 z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right\} \theta\left(1-z / z^{\prime}\right), \\
&=-\frac{\alpha_{s}}{\pi}\left(\frac{z}{z^{\prime}}\right) \frac{1-z / z^{\prime}}{2}\left[\frac{N_{c}^{2}-2}{2 N_{c}} \frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
&+\frac{N_{c}^{2}-2}{2 N_{c}} \frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right) \\
& \quad-\frac{1}{N_{c}} \frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
&\left.\quad-\frac{1}{N_{c}} \frac{1}{\bar{u}^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right] \theta\left(1-z / z^{\prime}\right),
\end{aligned}
$$

Anomalous Dimensions

$$
\begin{aligned}
\gamma_{31,31}= & -3 \frac{\alpha_{s} C_{F}}{\pi} \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right) \delta\left(1-z / z^{\prime}\right) \\
& -\frac{\alpha_{s} C_{F}}{\pi} \delta\left(v-v^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(u^{\prime}-u\right) \frac{u}{u^{\prime}} \frac{1}{\left(u^{\prime}-u\right)_{+}}+\theta\left(u-u^{\prime}\right) \frac{\bar{u}}{\bar{u}^{\prime}} \frac{1}{\left(u-u^{\prime}\right)_{+}}\right] \\
& -\frac{\alpha_{s} C_{F}}{\pi} \delta\left(u-u^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(v^{\prime}-v\right) \frac{v}{v^{\prime}} \frac{1}{\left(v^{\prime}-v\right)_{+}}+\theta\left(v-v^{\prime}\right) \frac{\bar{v}}{\bar{v}^{\prime}} \frac{1}{\left(v-v^{\prime}\right)_{+}}\right], \\
\gamma_{38,31}=- & -\frac{\alpha_{s}}{\pi} \theta\left(1-z / z^{\prime}\right)\left(\frac{z}{z^{\prime}}\right)^{2}\left\{\left[\frac{u v^{\prime}+v u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
& +\left[\frac{\bar{u} \bar{v}^{\prime}+\bar{v} \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right) \\
& -\left[\frac{u \bar{v}^{\prime}+\bar{v} u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
& \left.-\left[\frac{\bar{u} v^{\prime}+v \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right\} .
\end{aligned}
$$

$$
\gamma_{i 1, j 8}=\frac{C_{F}}{2 N_{c}} \gamma_{i 8, j 1}
$$

Anomalous Dimensions

$$
\begin{aligned}
\gamma_{38,38}= & -3 \frac{\alpha_{s} C_{F}}{\pi} \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right) \delta\left(1-z / z^{\prime}\right) \\
& +\frac{\alpha}{\pi} \frac{1}{2 N_{c}} \delta\left(v-v^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(u^{\prime}-u\right) \frac{u}{u^{\prime}} \frac{1}{\left(u^{\prime}-u\right)_{+}}+\theta\left(u-u^{\prime}\right) \frac{\bar{u}}{\bar{u}^{\prime}} \frac{1}{\left(u-u^{\prime}\right)_{+}}\right] \\
& +\frac{\alpha_{s}}{\pi} \frac{1}{2 N_{c}} \delta\left(u-u^{\prime}\right) \delta\left(1-\frac{z}{z^{\prime}}\right)\left[\theta\left(v^{\prime}-v\right) \frac{v}{v^{\prime}} \frac{1}{\left(v^{\prime}-v\right)_{+}}+\theta\left(v-v^{\prime}\right) \frac{\bar{v}}{\bar{v}^{\prime}} \frac{1}{\left(v-v^{\prime}\right)_{+}}\right] \\
& -\frac{\alpha_{s}}{\pi} \theta\left(1-z / z^{\prime}\right)\left(\frac{z}{z^{\prime}}\right)^{2}\left\{\frac{N_{c}^{2}-2}{2 N_{c}}\left[\frac{u v^{\prime}+v u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{u^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right)\right. \\
& +\frac{N_{c}^{2}-2}{2 N_{c}}\left[\frac{\bar{u} \bar{v}^{\prime}+\bar{v} \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} v^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right) \\
& +\frac{1}{N_{c}}\left[\frac{u \bar{v}^{\prime}+\bar{v} u^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{u^{\prime} \bar{v}^{\prime}} \delta\left(v-\frac{z}{z^{\prime}} \xi\right) \delta\left(\bar{u}-\frac{z}{z^{\prime}} \bar{u}^{\prime}\right) \\
& \left.+\frac{1}{N_{c}}\left[\frac{\bar{u} v^{\prime}+v \bar{u}^{\prime}}{\left(1-z / z^{\prime}\right)_{+}}+\frac{1-z / z^{\prime}}{z / z^{\prime}}\right] \frac{1}{\bar{u}^{\prime} v^{\prime}} \delta\left(\bar{v}-\frac{z}{z^{\prime}} \bar{v}^{\prime}\right) \delta\left(u-\frac{z}{z^{\prime}} u^{\prime}\right)\right\}
\end{aligned}
$$

