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•        Production at large     in hadronic collisions

is special

Braaten & Fleming

Quarkonium Fragmentation

Fragmentation:

J/ψ p?

�̂(a + b ! cc̄(3S[8]
1 ) + X)h0|OJ/ (3S[8]

1 )|0i
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dp?
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d�̂

dp?
(ij ! g(p?/z) + X)Dg!J/ (z)
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It is instructive to examine the high energy limit of color-octet quarkonia production.

As the partonic Mandelstam invariants grow to infinity, the cross section in eqn. (2.15)

reduces to

dσ

dt̂
(ab → ψQc)octet

ŝ→∞−→
dσ

dt̂
(ab → g∗c) ×

( 1

M2

)2
× |A

(

g∗ → ψQ

)

|2. (2.17)

This asymptotic expression has a simple gluon fragmentation interpretation. The first

factor represents the differential cross section for producing a high energy virtual gluon.

The second term comes from the square of the gluon’s propagator. The last factor equals

the square of the amplitude in eqn. (2.9) times M8(ψQ) and determines the virtual gluon’s

probability to hadronize into a ψQ bound state. The gluon fragmentation picture for heavy

quarkonium production is thus precisely recovered in the high energy limit [1].

Gluon fragmentation via the color-octet mechanism represents the dominant source of

large p⊥ quarkonia at hadron colliders [4,6,10]. The total cross section for ψQ production

reduces at high energies to the fragmentation form

d3σ

dy3dy4dp⊥

(

AB → ψQX
)

frag
=

∫ 1

0
dz

d3σ

dy3dy4dp⊥

(

AB → g
(p⊥

z

)

X, µ
)

Dg→ψQ
(z, µ).

(2.18)

The gluon fragmentation function evaluated at the factorization scale µ = M is readily

identified from eqn. (2.17):

Dg→ψQ
(z, M) =

4παs(M)M8(ψQ)

M2
δ(1 − z). (2.19)

Leading log QCD corrections to this result may be summed up using the Altarelli-Parisi

equation

µ
dDg→ψQ

dµ
(z, µ) =

αs(µ)

π

∫ 1

z

dy

y
Pgg(y)Dg→ψQ

(z

y
, µ

)

(2.20)

where

Pgg(y) = 6
[ y

(1 − y)+
+

1 − y

y
+ y(1 − y) +

33 − 2nf

36
δ(1 − y)

]

(2.21)

denotes the gluon splitting function for nf active quark flavors. At high energies, the

fragmentation approximation in (2.18) incorporates sizable O(log(E2/M2)) renormaliza-

tion effects, and its intrinsic O(M2/E2) errors are negligible. In contrast, the color-octet

formula in (2.16) does not include any QCD corrections which are small at low p⊥, but it

retains full dependence upon all O(M2/E2) terms. These two forms for the ψQ differential

cross section are thus complementary.
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Quarkonium Fragmentation

Sum logs: run from    to  p? 2mc

2
2

2

�! ⌦

Dg! 0(z, 2mc) =
⇡↵s(2mc)

24m3
c

�(1 � z)h0|O 0

8 (3S1)|0i



Improved Factorization Approach
Kang, Qiu & Sterman; Fleming, Leibovich, Mehen & Rothstein

Improved NRQCD factorization:

     First organizes       in powers of 

     Then organizes       in powers of 

     Systematic perturbative expansion in           and 

v

↵s(2mc)↵s(p?)

(2mc)
p?

d�

dp?
d�

dp?

Then we have to consider to what 
order we work in for each parameter



Need for SCET
• NRQCD doesn’t contain correct d.o.f.

– At endpoint need both soft and collinear modes

– NRQCD only has soft d.o.f

• SCET couples collinear and soft d.o.f.
– Was created to sum Sudakov logarithms

– Expansion in αs and   

• Couple NRQCD and SCET for corners of phase space

+ crossed  d iagram

� ⇠ p?/p
�



SCET Intro
• Systematic expansion in
• Degrees of freedom:

–Collinear particles with
–Soft particles with 
–Ultrasoft particles with

• By using gauge invariance, operators 
constrained

• Field redefinition allows leading order 
factorization theorems  



Gauge invariance restrictions

Factorization

Only coupling to ultrasoft sector

}
Introduce usoft Wilson line:

Field redef:

Ultrasoft decouples:



In Pictures

Heavy/soft modes
do not interact with
collinear modes
⇒ Rate factors! 

W

W†

Y †

Y 



Quarkonium Factorization in SCET

Quarkonium production at large      in hadron collisions  

1. At            match QCD onto massive SCET

2. Factor rate

3. Run to 

4. Match onto NRQCD

p?

p? ⇠
p

ŝ� mQ

µ ⇠ p?

µ ⇠ mQ

Expansion in 

� ⇠ (2mQ)/p?

↵s(p?)

Power counting in 

Expansion in ↵s(2mQ)

vPower counting in 



Quarkonium Factorization in SCET
We have multiple directions

pn ⇡
Q

2
nµ pn̄ ⇡

Q

2
n̄µ pn0 ⇡ p?

2
n0µ

nµ
= (1, 0, 0, 1), n̄µ

= (1, 0, 0,�1), n0µ
= (cosh y, 1, 0, sinh y)

Integrate out   X

p(pn) p̄(pn̄)

X

QQ̄(pn0)



Quarkonium Factorization in SCET
We have multiple directions

pn ⇡
Q

2
nµ pn̄ ⇡

Q

2
n̄µ pn0 ⇡ p?

2
n0µ

nµ
= (1, 0, 0, 1), n̄µ

= (1, 0, 0,�1), n0µ
= (cosh y, 1, 0, sinh y)

Integrate out   X

Gives proton PDF

p(pn) p̄(pn̄)

X

QQ̄(pn0)
Gives fragmentation 

functions

Gives antiproton PDF



Matching

2
Q
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FIG. 1: Matching of OQQQQ
qq onto the full theory at leading order. On the left are two leading order

Feynman diagrams that contribute to the production of a QQ̄ pair from an incoming qq̄ pair . On

the right is the tree-level matrix element of OQQ
qq . The dashed lines are incoming and outgoing

collinear light quark lines, and the dashed double lines are incoming and outgoing QQ̄ pairs. At

this order the matching coefficient is proportional to α3
s(Q).

′γµg
µν
⊥ }. This operators scale as λ8

mQ
in the SCETm power counting. The hard matching

coefficient C(ω1.ω2, ω̄1, ω̄2, ω′
1, ω

′
2, ω

′
3, ω

′
4)D

abcd
µνρλ is determined by perturbatively matching this

operator onto the full theory operator in Eq.(2) at the scale Q, and is therefore given by an

expansions in αs(Q). For example, the matching of the operator OQQ
qq is depicted in Feynman

diagrams in Fig. 1. Note that the diagrams on the left side of this diagram are only a gauge

invariant sub-set of all possible qq̄ → QQ̄ diagrams. There are additional diagrams that will

be considered next that match onto a fragmentation diagram, or interference diagrams that

match onto the matrix element of a hybrid operator.

The fragmentation operator for an incoming qq̄ to produce an outgoing gluon in the n′

direction is

OGG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2)F

abcd
µνρλ (17)

× (χ̄n,ω2Γ
aµχn̄,ω̄1)(B

bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Bcρ
n′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1)

This operator can produce a QQ̄ pair through a time ordered product with an order one

interaction term from the SCET Lagrangian. These operators scale as λ6
m, and are therefore

enhanced by λ2
m ∼ m2/Q2 relative to the direct production processes. Again these operators

must be matched onto the full theory. For example, the matching of OG
qq is depicted in

Feynman diagrams in Fig. 2. Note, that the matching coefficient at tree level is proportional

to α2
s(Q), which is one order lower in αs(Q) compared to the direct contribution considered

previously.
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+ · · · ++

2

FIG. 2: Matching OGG
qq at leading order. On the left is the square of the full theory amplitudes, and

on the right is the matrix element of OGG
qq . At this order the matching coefficient is proportional

to α2
s(Q).

The hybrid operator has the form

OQQG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3)H

abcd
µνλ (18)

×
[
(χ̄n,ω2Γ

aµχn̄,ω̄1)(B
bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃cχn′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1) + h.c.
]
,

where h.c. stands for hermitian conjugate. This operator scales as λ7
m, and thus falls in

between the fragmentation contribution and direct production in the power counting. In

addition this the leading order matching goes as α2
s(Q)

√
αs(Q).

Next we Fierz transform the SCETm operators so that all fields in each direction are

grouped together. To simplify matters we keep only those field bilinears for the incoming

directions n and n̄ that have non-vanishing overlap with the initial hadrons h1 and h2, which

we now restrict to be a proton or anti-proton. The direct production operator in Eq.(16)

transforms to

OQQQQ
qq = K

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3, ω

′
4) (19)

×(χ̄n,ω2

n̄/

2
χn,ω1)(χ̄n′,ω′

2
Γ̃aχn′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
4
Γ̃aχn′,ω′

3
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

the fragmentation contribution operator Eq.(17) transforms to

OGG
qq = Kνρ

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2) (20)

× (χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Baρ
n′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) ,

and the hybrid operator transforms to

OQQG
qq = Kν

∫
[dω][dω̄][dω′] C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2, ω

′
3) (21)

×
[
(χ̄n,ω2

n̄/

2
χn,ω1)(B

aν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(χ̄n′,ω′
3
Γ̃aχn′,ω′

2
)(χ̄n̄,ω̄2

n/

2
χn̄,ω̄1) + h.c.

]
.

10

+ · · · +

Q

Q̄
2

O(1) O(�2) � ⇠ mQ/p?

Example: qq̄ ! QQ̄

Give different fragmentation functions

d

2
�

dp

2
?dy

/
Z

dx1dx2fq/p(x1)fq̄/p̄(x2)
⇥
�̂

�(x1, x2, p?, y)⌦DQQ̄/�

⇤

DQQ̄/g(z) DQQ̄/QQ̄(u, v, z)
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Example:                at O(1)

The matrix elements involving the incoming states |h1
n〉 and |h2

n̄〉 in Eqs.(26,27,28) are

related to the parton distribution functions (PDFs) [8]

1

2

∑

spin
〈hn(p)|χn,ω1n̄/χn,ω2|hn(p)〉 = 4n̄ · p

∫ 1

0

dz δ(ω−)δ(ω+ − 2zn̄ · p)fi/p(z) (29)

− 4n̄ · p
∫ 1

0

dz δ(ω−)δ(ω+ + 2zn̄ · p)f̄i/p(z)

1

2

∑

spin
〈hn(p)|Tr

[
Bµ

n,ω1
Bn,ω2

µ

]
|hn(p)〉 = −ω+n̄ · p

2

∫ 1

0

dz δ(ω−)δ(ω+ − 2zn̄ · p)fg/p(z) ,

where ω± = ω1 ± ω2, fi/p(z) is the quark PDF, f̄i/p(z) is the anti-quark PDF, and fg/p(z)

is the gluon PDF. In addition the vacuum matrix element in the fragmentation operator,

Eq.(27) can be related to the standard fragmentation function giving the probability of

finding the quarkonium state H(p⊥, y) in the gluon

〈0|Tr
{
(Baν

n′,ω′
1
)P†

H(p⊥, y)PH(p⊥, y)(Baρ
n′,ω′

2
)
}
|0〉

= −
ω

′2
+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ − 2n̄′ · p

z
)DH/g(z) . (30)

For completeness we give the SCET definition of the light-quark to quarkonium fragmenta-

tion function

〈0|n̄/′χn′,ω′
1
P†

H(p⊥, y)PH(p⊥, y)χ̄n′,ω′
2
|0〉 =

ω′
+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ − 2n̄′ · p

z
)DH/q(z) (31)

−
ω′

+

2

∫ 1

0

dz

z
δ(ω′

−)δ(ω′
+ +

2n̄′ · p
z

)DH/q̄(z) .

Substituting Eqs.(29, 30) into Eq.(27) we arrive at the familiar factored form for the frag-

mentation cross section in proton anti-proton collisions:

dσ

dp⊥
=

1

2s

∫
dx1dx2

dz

z

∫
dy

(4π)2
σ̂(x1, x2, z, p⊥, y)fq/p(x1)fq̄/p̄(x2)DHQ/g(z) , (32)

where σ̂ is the short-distance partonic differential cross section for producing a gluon from

the collision of a quark and antiquark, fq/p(x1) is the PDF for finding a light quark in the

proton, fq̄/p̄(x2) is the PDF for find a light anti-quark in the anti-proton, and DHQ/g(z) is

the fragmentation function for finding the quarkonium state HQ in a gluon.

The vacuum matrix elements in the direct production and hybrid operators are also

fragmentation functions, but of a new type. Here we define the direct production operator

13

qq̄ ! g
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FIG. 1: Matching of OQQQQ
qq onto the full theory at leading order. On the left are two leading order

Feynman diagrams that contribute to the production of a QQ̄ pair from an incoming qq̄ pair . On

the right is the tree-level matrix element of OQQ
qq . The dashed lines are incoming and outgoing

collinear light quark lines, and the dashed double lines are incoming and outgoing QQ̄ pairs. At

this order the matching coefficient is proportional to α3
s(Q).

′γµg
µν
⊥ }. This operators scale as λ8

mQ
in the SCETm power counting. The hard matching

coefficient C(ω1.ω2, ω̄1, ω̄2, ω′
1, ω

′
2, ω

′
3, ω

′
4)D

abcd
µνρλ is determined by perturbatively matching this

operator onto the full theory operator in Eq.(2) at the scale Q, and is therefore given by an

expansions in αs(Q). For example, the matching of the operator OQQ
qq is depicted in Feynman

diagrams in Fig. 1. Note that the diagrams on the left side of this diagram are only a gauge

invariant sub-set of all possible qq̄ → QQ̄ diagrams. There are additional diagrams that will

be considered next that match onto a fragmentation diagram, or interference diagrams that

match onto the matrix element of a hybrid operator.

The fragmentation operator for an incoming qq̄ to produce an outgoing gluon in the n′

direction is

OGG
qq =

∫
[dω][dω̄][dω′]C(ω1, ω2, ω̄1, ω̄2, ω

′
1, ω

′
2)F

abcd
µνρλ (17)

× (χ̄n,ω2Γ
aµχn̄,ω̄1)(B

bν
n′,ω′

1
)P†

H(p⊥, y)PH(p⊥, y)(Bcρ
n′,ω′

2
)(χ̄n̄,ω̄2Γ

dλχn,ω1)

This operator can produce a QQ̄ pair through a time ordered product with an order one

interaction term from the SCET Lagrangian. These operators scale as λ6
m, and are therefore

enhanced by λ2
m ∼ m2/Q2 relative to the direct production processes. Again these operators

must be matched onto the full theory. For example, the matching of OG
qq is depicted in

Feynman diagrams in Fig. 2. Note, that the matching coefficient at tree level is proportional

to α2
s(Q), which is one order lower in αs(Q) compared to the direct contribution considered

previously.
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n̄0 ·pH = zn̄0 ·pQQ̄n̄0 ·p1 = u n̄0 ·pQQ̄ n̄0 ·p4 = v n̄0 ·pQQ̄Note: Usoft Wilson lines cancel

= �(!0
1 � !0

2 + !0
3 � !0

4)
Z

dz

z
du dv �(z � n̄0 ·p

!0
1 � !0

2

)

⇥�(v � 1� z
!0

2

n̄0 ·p )�(u� z
!0

4

n̄0 ·p )DQQ̄
i{1,8}(u, v, z)

�0|�̄n0,�0
2
�i(µ){1, TA}�n0,�0

1
PH
n0,Q�̄n0,�0

4
�i
(µ){1, TA}�n0,�0

3
|0⇥

(DPFF)

�i(µ) =
1

2

�
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Running

n̄0 ·pH = zn̄0 ·pQQ̄n̄0 ·p1 = u n̄0 ·pQQ̄ n̄0 ·p4 = v n̄0 ·pQQ̄

Essentially Efremov-Radyushkin-Brodsky-Lepage evolution in u, v

DGLAP in z

µ2 d

dµ2
D[1]

QQ̄!H
(u, v, z;µ) =

Z 1

0
dwV (u,w;µ)D[1]

QQ̄!H
(w, v, z;µ)

µ

2 d

dµ

2
D

[1]
QQ̄!H

(u, v, z;µ) =
Z 1

0
dxPQQ̄[1]!QQ̄[8](x;µ)D[8]

QQ̄!H
(w, v, z/x;µ)



Matching onto NRQCD

• Use boosted NRQCD

At scale             integrate out heavy quark mass ⇠ 2mQ

vµ =
1
2

Q

2mQ
n0µ +

1
2

mQ

Q
n̄0µ Q = 2p? cosh y

Decompose momentum in quarkonium frame

pµ = mQvµ + kµ

SCET scaling
pµ = p̃µ + rµ =) n̄0 · p̃! mQn̄0 · v

rµ = r̃µ + rµ
s = r̃µ + kµ



Matching onto NRQCD

• Use boosted NRQCD

• NRQCD inherits Wilson lines (cancels for 
color-singlet)

At scale             integrate out heavy quark mass ⇠ 2mQ

�̄n0,!2�
a{1, TA}�n0,!1 = Ca�(mQn̄0 · v � !1)�(mQn̄0 · v � !2)�†

vWv�̃a{1, TA}W †
v v + h.c.
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NRQCD fields



Matching onto NRQCD

• Use boosted NRQCD

• NRQCD inherits Wilson lines (cancels for 
color-singlet)

At scale             integrate out heavy quark mass ⇠ 2mQ

�̄n0,!2�
a{1, TA}�n0,!1 = Ca�(mQn̄0 · v � !1)�(mQn̄0 · v � !2)�†

vWv�̃a{1, TA}W †
v v + h.c.

Wilson lines with 
NRQCD gluons



Matching onto NRQCD

• Use boosted NRQCD

• NRQCD inherits Wilson lines (cancels for 
color-singlet)

• If ignore running, recover NRQCD results

At scale             integrate out heavy quark mass ⇠ 2mQ

DQQ̄
i,{1,8}(u, v, z)! Ci�(1� z)�

✓
u� 1

2

◆
�

✓
v � 1

2

◆

⇥h0|�†
vW�i{1, TA}W † vPHv †

vW�i{1, TA}W †�v|0i



Conclusions

• Can prove factorization using SCET 

• Power suppressed fragmentation functions

• Interesting running

• Maybe important phenomenologically
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