Heavy quarkonium production

at high p_{T} using PQCD factorization

Yan-Qing Ma

Brookhaven National Laboratory

Based on works done with: Z.-B. Kang, J. Qiu, G. Sterman, and H. Zhang

The 9th International Workshop on Heavy Quarkonium 2013 IHEP, P. R. China from 22-26 April, 2013

Outline

> Introduction

- Heavy quarkonium, historical production models
- Difficulties in NRQCD model
>PQCD factorization for heavy quarkonium production
- Leading power in $1 / p_{T}$ expansion
- Next-to-leading power in $1 / p_{T}$ expansion
- Calculation of hard part
- Calculation of Evolution equation for FFs
- Determine initial condition for FFs using NRQCD model
- Application
> Summary and outlook

Heavy quarkonium, produciton models

> Effectively, a non-relativistic QCD system:

Charmonium: $v^{2} \approx 0.3$
Bottomonium: $v^{2} \approx 0.1$
Potentially, could be similar to a QED bound state, like positronium
> Multiple well-separated scales - ideal for effective theory:
$\left.\begin{array}{ll}\text { Quark mass: } & \mathrm{M} \\ \text { Momentum: } & \mathrm{Mv} \\ \text { Energy: } & \mathrm{Mv}^{2}\end{array}\right\}$

$$
M \gg M v \gg M v^{2} \sim \Lambda_{Q C D}
$$

> Historical mostly used production models:

- Color singlet model (CSM) : 1975

> Einhorn, Ellis (1975), Chang (1980),
> Berger and Jone (1981), ...

- Color evaporation model (CEM) : 1977 Fritzsch (1977), Halzen (1977), ...
- NRQCD model : 1986,1994

Caswell, Lapage (1986)
Bodwin, Braaten, Lepage, 9407339
It was proved that both CSM and CEM are just special cases of NRQCD model. Bodwin, Braaten, Lee, 0504014

Large high order corrections in NRQCD

$>S$-wave channel (${ }^{3} S_{1}^{[1]}$):

- Large corrections are first found for NLO relative to LO
- The estimated NNLO* contribution is still larger then NLO

Campbell, Maltoni, Tramontano, 0703113,
Artoisenet, Campbell, Lansburg, Maltoni,
Tramontano, 0806.3282
> P-wave channel ($\left.{ }^{3} P_{J=0,1,2}^{[1,8]}\right)$:

- Large NLO corrections are first found for CS channel, but with negative sign
- later CO channels are found to have similar behavior

YQM, Wang, Chao, 1002.3987
YQM, Wang, Chao, 1009.3655
Butensckön, Kniehl, 1009.5662

Explain the large corrections

$>$ LO in α_{s} but NNLP in 1/p p_{T} :

$$
\frac{d \hat{\sigma}^{L O}}{d p_{T}^{2}} \sim \alpha_{S}^{3}\left(p_{T}\right) \frac{m_{Q}^{4}}{p_{T}^{8}}
$$

YQM, 1207.3073
The behavior $\alpha_{s}^{3} \frac{m_{Q}^{4}}{p_{T}^{8}}$ persists even calculated to all order in v^{2}.
> NLO in α_{s} but NLP in $1 / \mathrm{p}_{\mathrm{T}}$: quark pair fragmentation

$>$ NNLO in $\alpha_{\boldsymbol{s}}$ but LP in $\mathbf{1 /} \mathbf{p}_{\boldsymbol{T}}$: guon fragmaentation Braaten, Yuan, 9303205

\checkmark Similar explaination for large corrections of ${ }^{3} P_{J}^{[1,8]}$ channel: LO in α_{s} gives NLP, while NLO in α_{s} gives LP.

New approach is needed!

Conclusion: LO α_{s} expansion $\neq \mathrm{LP}$ in $1 / p_{T}$ expansion!

Question: How reliable is the perturbative expansion?
> pQCD factorization approach: leading power
Braaten, Yuan, 9303205

- Pick up the LP contribution, resummation
- Not good enough: e.g. for ${ }^{3} S_{1}^{[1]}$ and ${ }^{1} S_{0}^{[8]}$ state, which are dominated by NLP.
> pQCD factorization approach: up to next power
- Can be proven to all order in α_{s}

Kang, Qiu, Sterman, 1109.1520 Kang, YQM, Qiu, Sterman, 1304.xxxx

- Application range: $p_{T} \gg M_{H} \sim 2 m_{Q}$
- Double expansion: M_{H} / p_{T} power expansion $+\alpha_{S}$-expansion
- Take care of both power expansion and resummation of the large logarithms
$>$ Effectively, SCET factorization approach can give equivalent formula once the pQCD factorization is proven. (next talk)

Fleming, Leibovich, Mehen, Rothstein 1207.2578

- If SCET factorization is argued to be valid, pQCD factorization may not work.
- If pQCD factorization is proven to be valid, SCET factorizaiton should work

Perturbative factorization approach

> Ideas:

$\mu_{0} \sim 2 m_{Q}$

$$
\mathcal{O}\left(\frac{1}{P_{T}^{6}}\right)
$$

At high pT, dominant contributions come from the region of phase space where active partons are close to mass-shell
> Collinear factorization - an "EFT" of QCD

- Integrate out the virtuality of active partons - power expansion in 1/pT
- Match the factorized form and pQCD at the factorization scale: $\mu_{\mathrm{F}} \sim \mathrm{pT}$

$$
\sigma\left(p_{T} / \mu, \alpha_{s}(\mu)\right)=\hat{\sigma}\left(p_{T} / \mu_{F}, \mu / \mu_{F}, \alpha_{s}(\mu)\right) \otimes D\left(\mu_{F}, \alpha_{s}(\mu)\right)+\mathcal{O}\left(1 / p_{T}\right)
$$

- μ_{F} - independence: evolution of non-perturbative PDFs or FFs, ...
- Predictive power: Universality of PDFs or FFs, evolution, ...

Single parton fragmentation

$>$ Perturbative pinch singularity:

$\approx \int \frac{d z}{z} d^{2} k_{\perp} \mathcal{H}_{g g \rightarrow g}\left(Q, k^{2}=0\right) \int d k^{2} \frac{1}{k^{2}+i \epsilon} \frac{1}{k^{2}-i \epsilon} \mathcal{D}_{g \rightarrow \mathrm{~J} / \psi}(k, P)$
Long-lived parton state
> Parton model collinear factorization:

$$
\begin{gathered}
k^{2}, k_{\perp}^{2} \ll Q \quad z=P \cdot n / k \cdot n \quad \text { Fragmentation function } \\
\approx \int \frac{d z}{z} \mathcal{H}_{g g \rightarrow g}(Q, z=P \cdot n / k \cdot n) \int d k^{2} d^{2} k_{\perp} \frac{1}{k^{2}+i \epsilon} \frac{1}{k^{2}-i \epsilon} \mathcal{D}_{g \rightarrow \mathrm{~J} / \psi}(k, P) \\
\text { Short-distance part }
\end{gathered}
$$

Factorization: fragmentation at leading power

Nayak, Qiu, and Sterman, 0509021, ...
> Leading power single-hadron production:

$$
d \sigma_{A+B \rightarrow H+X}\left(p_{T}\right)=\sum_{i} d \tilde{\sigma}_{A+B \rightarrow i+X}\left(p_{T} / z, \mu\right) \otimes D_{H / i}\left(z, m_{c}, \mu\right)+\mathcal{O}\left(m_{H}^{2} / p_{T}^{2}\right)
$$

$>$ Fragmentation function - gluon to a hadron $\mathrm{H}($ e.g., J/ $/$):

$$
\begin{aligned}
D_{H / g}\left(z, m_{c}, \mu\right) & \propto \frac{1}{P^{+}} \operatorname{Tr}_{\text {color }} \int d y^{-} e^{-i k^{+} y^{-}} \\
& \times\langle 0| F^{+\lambda}(0)\left[\Phi_{-}^{(g)}(0)\right]^{\dagger} a_{H}\left(P^{+}\right) a_{H}^{\dagger}\left(P^{+}\right) \Phi_{-}^{(g)}\left(y^{-}\right) F_{\lambda}^{+}\left(y^{-}\right)|0\rangle
\end{aligned}
$$

Cannot get fragmentation func. from PDFs or decay matrix elements

Production of heavy quark pairs

$>$ Perturbative pinch singularity:

$$
\begin{gathered}
P^{\mu}=\left(P^{+}, 4 m^{2} / 2 P^{+}, 0_{\perp}\right) \\
q^{\mu}=\left(q^{+}, q^{-}, q_{\perp}\right) \\
q \neq q^{\prime} \\
D_{i j}(P, q) \propto\langle\mathrm{J} / \psi| \psi_{i}^{\dagger}(0) \chi_{j}(y)|0\rangle
\end{gathered}
$$

- Scattering amplitude:

$$
\mathcal{M} \propto \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\hat{H}(P, q, Q) \frac{\gamma \cdot(P / 2-q)+m}{(P / 2-q)^{2}-m^{2}+i \epsilon} \hat{D}(P, q) \frac{\gamma \cdot(P / 2+q)+m}{(P / 2+q)^{2}-m^{2}+i \epsilon}\right]
$$

- Potential poles:
$q^{-}=\left[q_{\perp}^{2}-2 m^{2}\left(q^{+} / P^{+}\right)\right] /\left(P^{+}+2 q^{+}\right)-i \epsilon \theta\left(P^{+}+2 q^{+}\right) \rightarrow q_{\perp}^{2} / P^{+}-i \epsilon$
$q^{-}=-\left[q_{\perp}^{2}+2 m^{2}\left(q^{+} / P^{+}\right)\right] /\left(P^{+}-2 q^{+}\right)+i \epsilon \theta\left(P^{+}-2 q^{+}\right) \rightarrow-q_{\perp}^{2} / P^{+}+i \epsilon$
- Condition for pinched poles:

Factorization: fragmentation at next power

> Heavy quark pair fragmentation:

Qiu, Sterman (1991)
Kang, YQM, Qiu, Sterman, 1304.xxxx

$$
\sum_{[Q \bar{Q}(\kappa)]} d \hat{\sigma}_{A+B \rightarrow[Q \bar{Q}(\kappa)]+X}\left(p(1 \pm \zeta) / 2 z, p\left(1 \pm \zeta^{\prime}\right) / 2 z\right) \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}\right)
$$

$>$ Other channels of power corrections:

$$
\begin{aligned}
& \sim \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{T}^{2}}\right) \otimes D_{c \rightarrow H} \\
& \text { or } \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{T}^{2}}\right) \otimes \mathcal{D}_{[f f] \rightarrow H}
\end{aligned}
$$

Factorization formalism and evolution

> Factorization formalism:
Kang, YQM, Qiu, Sterman, 1304.xxxx

$$
\begin{aligned}
& d \sigma_{A+B \rightarrow H+X}\left(p_{T}\right)= \sum_{f} d \hat{\sigma}_{A+B \rightarrow f+X}\left(p_{f}=p / z\right) \otimes D_{H / f}\left(z, m_{Q}\right) \\
&+\sum_{[Q \bar{Q}(\kappa)]} d \hat{\sigma}_{A+B \rightarrow[Q \bar{Q}(\kappa)]+X}\left(p(1 \pm \zeta) / 2 z, p\left(1 \pm \zeta^{\prime}\right) / 2 z\right) \\
&+\mathcal{O}\left(m_{Q}^{4} / p_{T}^{4}\right) \\
& \kappa=v, a, t \text { for spin, and } 1,8 \text { for color. }
\end{aligned}
$$

$>$ Independence of the factorization scale: $\frac{d}{d \ln (\mu)} \sigma_{A+B \rightarrow H X}\left(P_{T}\right)=0$
> Evolution equations at NLP:

$$
\begin{aligned}
& \frac{d}{d \ln \mu^{2}} D_{H / f}\left(z, m_{Q}, \mu\right)=\sum_{j} \frac{\alpha_{s}}{2 \pi} \gamma_{f \rightarrow j}(z) \otimes D_{H / j}\left(z, m_{Q}, \mu\right) \\
& \quad+\frac{1}{\mu^{2}} \sum_{[Q \bar{Q}(\kappa)]} \frac{\alpha_{s}^{2}}{(2 \pi)^{2}} \Gamma_{f \rightarrow[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}\right) \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right) \\
& \frac{d}{d \ln \mu^{2}} \mathcal{D}_{H /[Q \bar{Q}(c)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\sum_{[Q \bar{Q}(\kappa)]} \frac{\alpha_{s}}{2 \pi} K_{[Q \bar{Q}(c)] \rightarrow[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}\right) \\
& \otimes \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)
\end{aligned}
$$

Predictive power

> Calculation of short-distance hard parts in pQCD:
Power series in α_{s}, without large logarithms

- Calculation of evolution kernels in pQCD:

Power series in α_{s}, scheme in choosing factorization scale μ
Could affect the term with mixing powers
$>$ Universality of input fragmentation functions at μ_{0} :

$D_{H / f}\left(z, m_{Q}, \mu_{0}\right) \quad \mathcal{D}_{H /[Q \bar{Q}(\kappa)]}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu_{0}\right)$
$>$ Physics of $\mu_{0} \sim \mathbf{2 m}_{Q}$ - a parameter:
Evolution stops when

$$
\log \left[\frac{\mu_{0}^{2}}{\left(4 m_{Q}^{2}\right)}\right] \sim\left[\frac{4 m_{Q}^{2}}{\mu_{0}^{2}}\right]
$$

Different quarkonium states require different input distributions!

Short-distance hard parts

$>$ Calculation of hard parts at NLP level is similar as the calculation in NRQCD factorization, but with two differences:

- Set heavy quark mass m_{Q} as zero

Kang, Qiu, Sterman, 1109.1520

$$
\mathcal{P}_{a}=\frac{\hat{p}_{\bar{c}} \gamma^{+} \gamma^{5} \hat{\phi}_{c}}{2 \hat{P}^{+}},
$$

- Using the relativistic spin projectors

$$
\sigma_{q \bar{q} \rightarrow[Q \bar{Q}(c)] g}^{(3)}=\hat{\sigma}_{q \bar{q} \rightarrow[Q \bar{Q}(\kappa)] g}^{(3)} \otimes D_{[Q \bar{Q}(\kappa)] \rightarrow[Q \bar{Q}(c)]}^{(0)}+\hat{\sigma}_{q \bar{q} \rightarrow g g}^{(2)} \otimes D_{g \rightarrow[Q \bar{Q}(c)]}^{\tau}
$$

$$
\begin{aligned}
& \mathcal{P}_{v}=\frac{\hat{p}_{\bar{c}} \gamma^{+} \hat{p}_{c}}{2 \hat{P}^{+}}, \\
& \mathcal{P}_{t}^{\mu}=\frac{\hat{p}_{\bar{c}} \gamma^{+} \gamma_{\perp}^{\mu} \hat{p}_{c}}{2 \hat{P}^{+}},
\end{aligned}
$$

$D_{g \rightarrow[Q \bar{Q}]}^{(1)}$	$\alpha_{s}\left(2 m_{Q}\right)$
$\alpha_{s}^{2}(\mu)$	$\left(2 m_{Q}\right)^{2}$

$$
\widetilde{\mathcal{P}}_{\mu \nu}(p)=\frac{1}{2}\left[-g_{\mu \nu}+\frac{p_{\mu} n_{\nu}+n_{\mu} p_{\nu}}{p \cdot n}-\frac{p^{2}}{(p \cdot n)^{2}} n_{\mu} n_{\nu}\right]
$$

$D_{g \rightarrow[Q \bar{Q}]}^{(1)}:$
$>$ Calculate to NLP, even tree-level needs subtraction! Set $m_{Q}=0$ with care!

Evolution kernels: $1 \rightarrow 2$

$>$ Expand evolution equation to $O\left(\alpha_{s}^{2}\right)$:

$$
\begin{aligned}
\frac{\partial}{\partial \ln \mu^{2}} D_{[Q \bar{Q}(s I)] / f}^{(2)}\left(z, \mu^{2} ; u, v\right)= & \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} D_{[Q \bar{Q}(s I)] / g}^{(1)}\left(z^{\prime} ; u, v\right) \gamma_{g / f}^{(1)}\left(z / z^{\prime}\right) \\
+ & \frac{1}{\mu^{2}} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} \int_{0}^{1} d u^{\prime} \int_{0}^{1} d v^{\prime} \\
& \times \mathcal{D}_{\left.[Q \bar{Q}(s I)] /\left[Q \bar{Q}\left(s^{\prime} I^{\prime}\right)\right]\right]}^{(0)}\left(z^{\prime}, u^{\prime}, v^{\prime} ; u, v\right) \gamma_{\left[Q \bar{Q}\left(s^{\prime} I^{\prime}\right)\right] / f}^{(2)}\left(z / z^{\prime}, u^{\prime}, v^{\prime}\right)
\end{aligned}
$$

$$
\mathcal{D}_{[Q \bar{Q}(s I)] /\left[Q \bar{Q}\left(s^{\prime} I^{\prime}\right)\right]}^{(0)}\left(z^{\prime}, u^{\prime}, v^{\prime} ; u, v\right)=\delta^{s s^{\prime}} \delta^{I I^{\prime}} \delta\left(1-z / z^{\prime}\right) \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right)
$$

$>$ Using the form of zeroth order fragmentation function:

$$
\frac{1}{\mu^{2}} \gamma_{[Q \bar{Q}(s I)] / f}^{(2)}(z, u, v)=\frac{\partial}{\partial \ln \mu^{2}} D_{[Q \bar{Q}(s)] / f}^{(2)}\left(z, \mu^{2} ; u, v\right)
$$

$$
-\int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} D_{[Q \bar{Q}(s I)] / g}^{(1)}\left(z^{\prime} ; u, v\right) \gamma_{g / f}^{(1)}\left(z / z^{\prime}\right)
$$

Example: " $q \rightarrow Q \bar{Q}$ " $=$

$$
D_{[Q \bar{Q}(v 8)] / q}^{(2)}\left(z^{\prime} ; u, v, \mu^{2}\right)=\int^{\mu^{2}} \frac{d p_{c}^{2}}{\left(p_{c}^{2}\right)^{2}}\left[\alpha_{s}^{2}\left(\frac{N_{c}^{2}-1}{N_{c}} \frac{8(1-z)}{z^{2}}\right)\right] \quad D_{[Q \bar{Q}(v 8)] / g}^{(1)}\left(z^{\prime} ; u, v\right)=0
$$

Evolution kernels: $2 \rightarrow 2$

> Mismatch of "+" momentum integration range between the real and virtual diagrams : Kang, YQM, Qiu, Sterman, 1304.xxxx

$k^{+} \in\left(0, \frac{(1-z) P^{+}}{z}\right) k^{+} \in\left(0, P^{+}\right) \quad k^{+} \in\left(0, \frac{(1-z) P^{+}}{z}\right) \quad k^{+} \in\left(0, P_{Q}^{+}\right) \quad k^{+} \in\left(0, P_{Q}^{+} / P_{\bar{Q}}^{+}\right)$
> Consequence of mismatch: our results have uncanceled logarithmic terms

$$
\int_{0}^{\mu_{2}} \frac{d k^{+}}{k^{+}}-\int_{0}^{\mu_{1}} \frac{d k^{+}}{k^{+}}=\int_{\mu_{1}}^{\mu_{2}} \frac{d k^{+}}{k^{+}}=\ln \left(\mu_{2} / \mu_{1}\right)
$$

Logarithmic terms depend on the definition of "plus functions", one may eliminate the logarithm by choosing different definitions. Our definition:

$$
\begin{aligned}
&\left\{\left\langle f\left(v, v^{\prime}\right)\right\rangle_{+0} g(v) d v\right. \equiv \int_{0}^{1}\left[f\left(v, v^{\prime}\right) \theta\left(v-v^{\prime}\right)+f\left(\bar{v}, \bar{v}^{\prime}\right) \theta\left(\bar{v}-\bar{v}^{\prime}\right)\right] g(v) d v \\
& \int\left\langle f\left(v, v^{\prime}\right)\right\rangle_{+0} g\left(v^{\prime}\right) d v^{\prime} \equiv \int_{0}^{1}\left[f\left(v, v^{\prime}\right) \theta\left(v-v^{\prime}\right)+f\left(\bar{v}, \bar{v}^{\prime}\right) \theta\left(\bar{v}-\bar{v}^{\prime}\right)\right] g\left(v^{\prime}\right) d v^{\prime} \\
&\left\{\begin{aligned}
\int\left\langle f\left(v, v^{\prime}\right)\right\rangle_{+1} g(v) d v & \equiv \int_{0}^{1}\left[f\left(v, v^{\prime}\right) \theta\left(v-v^{\prime}\right)+f\left(\bar{v}, \bar{v}^{\prime}\right) \theta\left(\bar{v}-\bar{v}^{\prime}\right)\right]\left[g(v)-g\left(v^{\prime}\right)-\log \frac{1}{v^{\prime} \bar{v}^{\prime}}\right] d v \\
\int\left\langle f\left(v, v^{\prime}\right)\right\rangle_{+1} g\left(v^{\prime}\right) d v^{\prime} & \equiv \int_{0}^{1}\left[f\left(v, v^{\prime}\right) \theta\left(v-v^{\prime}\right)+f\left(\bar{v}, \bar{v}^{\prime}\right) \theta\left(\bar{v}-\bar{v}^{\prime}\right)\right]\left[g\left(v^{\prime}\right)-g(v)-\log \frac{1}{v \bar{v}}\right] d v^{\prime} \\
\int \frac{1}{(1-z)_{+}} g(z) d z & \equiv \int_{z_{0}}^{1} \frac{\left\lfloor g(z)-g(1)-\log \frac{1}{1-z_{0}}\right\rfloor}{1-z} d z
\end{aligned}\right.
\end{aligned}
$$

Evolution kernels

$$
\begin{aligned}
& \text { TWO } \rightarrow \text { tWO } \\
& P_{v 1 \rightarrow v 1}= P_{a 1 \rightarrow a 1} \\
&=\left(3-\left(\hat{S}_{0}\right)\right. C_{F} \Delta_{0}+C_{F} \Delta_{v}, \\
& P_{t 1 \rightarrow t 1}=\left(3-S_{0}\right. \\
& S_{0} C_{F} \Delta_{0}+C_{F} \tilde{\Delta}_{v}, \\
& P_{v 8 \rightarrow v 8}= P_{a 8 \rightarrow a 8}= \\
& P_{t 8 \rightarrow t 8}=\left(3-\left(S_{0}\right)\right. \\
& P_{F} C_{0}-\frac{1}{2 N_{c}} \Delta_{v}+\frac{1}{2 N_{c}} \frac{z}{2(1-z)_{+}} S_{+} S_{+}^{[8]}, \\
& C_{F} \Delta_{0}-\frac{1}{2 N_{c}} \tilde{\Delta}_{v}+\frac{1}{2 N_{c}} \frac{z}{2(1-z)_{+}}\left(S_{+} \Delta_{+}^{[8]}+S_{-} \Delta_{-}^{[8]}\right)
\end{aligned}
$$

$$
P_{v 8 \rightarrow v 1}=P_{a 8 \rightarrow a 1}=\frac{z}{2(1-z)} S_{+} \Delta_{-}^{[1]},
$$

Kang, YQM, Qiu, Sterman,

$$
P_{t 8 \rightarrow t 1}=\frac{z}{2(1-z)}\left(S_{+} \Delta_{-}^{[1]}+S_{-} \Delta_{+}^{[1]}\right),
$$

$$
P_{v 8 \rightarrow a 1}=P_{a 8 \rightarrow v 1}=\frac{z}{2(1-z)} S_{-} \Delta_{-}^{[1]},
$$

$$
P_{v 8 \rightarrow a 8}=P_{a 8 \rightarrow v 8}=\frac{1}{2 N_{c}} \frac{z}{2(1-z)} S_{-} \Delta_{+}^{[8]},
$$

$$
P_{X 1 \rightarrow Y 8}=\frac{N_{c}^{2}-1}{4 N_{c}^{2}} P_{X 8 \rightarrow Y 1}, \quad \text { for } \quad X, Y=v, a, t
$$

$$
S_{0}=\ln (u \bar{u} v \bar{v}), \quad S_{ \pm}=\left(\frac{u}{u^{\prime}} \pm \frac{\bar{u}}{\bar{u}^{\prime}}\right)\left(\frac{v}{v^{\prime}} \pm \frac{\bar{v}}{\bar{v}^{\prime}}\right),
$$

$$
\Delta_{0}=\delta(1-z) \delta\left(u-u^{\prime}\right) \delta\left(v-v^{\prime}\right)
$$

$$
\Delta_{ \pm}^{[1]}=\left[\delta\left(u-z u^{\prime}\right) \pm \delta\left(\bar{u}-z \bar{u}^{\prime}\right)\right]\left[\delta\left(v-z v^{\prime}\right) \pm \delta\left(\bar{v}-z \bar{v}^{\prime}\right)\right]
$$

$$
\Delta_{ \pm}^{[8]}=\left\{\left(N_{c}^{2}-2\right)\left[\delta\left(u-z u^{\prime}\right) \delta\left(v-z v^{\prime}\right)+\delta\left(\bar{u}-z \bar{u}^{\prime}\right) \delta\left(\bar{v}-z \bar{v}^{\prime}\right)\right]\right.
$$

$$
\left. \pm 2\left[\delta\left(u-z u^{\prime}\right) \delta\left(\bar{v}-z \bar{v}^{\prime}\right)+\delta\left(\bar{u}-z \bar{u}^{\prime}\right) \delta\left(v-z v^{\prime}\right)\right]\right\}
$$

$$
\Delta_{v}=\delta(1-z) \delta\left(u-u^{\prime}\right)\left[\left\langle\frac{1}{v-v^{\prime}}\right\rangle_{+1}-\left\langle\frac{\bar{v}^{\prime}}{v}\right\rangle_{+0}\right]+u \leftrightarrow v
$$

$$
\tilde{\Delta}_{v}=\delta(1-z) \delta\left(u-u^{\prime}\right)\left[\left\langle\frac{1}{v-v^{\prime}}\right\rangle_{+1}-\left\langle\frac{1}{v}\right\rangle_{+0}\right]+u \leftrightarrow v
$$

One \rightarrow two

Light quark case:

$$
\begin{aligned}
& \gamma_{[Q \bar{Q}(v 8)] / q}^{(2)}=\alpha_{s}^{2} \frac{N_{c}^{2}-1}{N_{c}} \frac{8(1-z)}{z^{2}} \\
& \gamma_{[Q \bar{Q}(v 1)] / q}^{(2)}=\gamma_{[Q \bar{Q}(a 8)] / q}^{(2)}=\gamma_{[Q \bar{Q}(a 1)] / q}^{(2)}=\gamma_{[Q \bar{Q}(t 8)] / q}^{(2)}=\gamma_{[Q \bar{Q}(t 1)] / q}^{(2)}=0
\end{aligned}
$$

Heavy quark case:

$$
\begin{aligned}
\gamma_{[Q \bar{Q}(v 8)] / Q}^{(2)}=\alpha_{s}^{2} \frac{N_{c}^{2}-1}{2 N_{c}^{3}} \frac{1}{\bar{u} \bar{v}} & \frac{1-z}{z^{2}} \frac{4 N_{c} \bar{u}(1-z u)+z(1+z \bar{u})}{1-z u} \\
& \times \frac{4 N_{c} \bar{v}(1-z v)+z(1+z \bar{v})}{1-z v}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{[Q \bar{Q}(v 1)] / Q}^{(2)}=\alpha_{s}^{2}\left(\frac{N_{c}^{2}-1}{N_{c}}\right)^{2} \frac{1-z}{\bar{u} \bar{v}} \frac{(1+z \bar{u})(1+z \bar{v})}{(1-z u)(1-z v)} \\
& \gamma_{[Q \bar{Q}(a 8)] / Q}^{(2)}=\alpha_{s}^{2} \frac{N_{c}^{2}-1}{2 N_{c}^{3}} \frac{1-z}{\bar{u} \bar{v}} \frac{(1+z \bar{u})(1+z \bar{v})}{(1-z u)(1-z v)} \\
& \gamma_{[Q \bar{Q}(a 1)] / Q}^{(2)}=\alpha_{s}^{2}\left(\frac{N_{c}^{2}-1}{N_{c}}\right)^{2} \frac{1-z}{\bar{u} \bar{v}} \frac{(1+z \bar{u})(1+z \bar{v})}{(1-z u)(1-z v)} \\
& \gamma_{[Q \bar{Q}(t 8)] / Q}^{(2)}=\gamma_{[Q \bar{Q}(t 1)] / Q}^{(2)}=0
\end{aligned}
$$

Gluon case:

$$
\begin{aligned}
\gamma_{[Q \bar{Q}(v 8)] / g}^{(2)}= & \alpha_{s}^{2} \frac{1}{4 u \bar{u} v \bar{v}}\left\{\frac { N _ { c } } { z ^ { 2 } } \left[4(1-z)^{2}-4(1-2 u \bar{u}-2 v \bar{v})(1-z)^{2}(z+2)\right.\right. \\
& \left.+(u-\bar{u})^{2}(v-\bar{v})^{2}\left(2 z^{4}+2 z^{3}-3 z^{2}-4 z+4\right)\right] \\
& \left.+\frac{N_{c}^{2}-4}{N_{c}}(u-\bar{u})(v-\bar{v})\left[z^{2}+(1-z)^{2}\right]\right\} \\
\gamma_{[Q \bar{Q}(v 1)] / Q}^{(2)}= & \alpha_{s}^{2} \frac{(u-\bar{u})(v-\bar{v})}{u \bar{u} v \bar{v}}\left[z^{2}+(1-z)^{2}\right] \\
\gamma_{[Q \bar{Q}(a 8)] / Q}^{(2)}= & \alpha_{s}^{2} \frac{1}{u \bar{u} v \bar{v}}\left[\frac{N_{c}}{2}(\bar{u} \bar{v}+u v)-\frac{1}{N_{c}}\right]\left[z^{2}+(1-z)^{2}\right] \\
\gamma_{[Q \bar{Q}(a 1)] / Q}^{(2)}= & \alpha_{s}^{2} \frac{1}{u \bar{u} v \bar{v}}\left[z^{2}+(1-z)^{2}\right] \\
\gamma_{[[Q \bar{Q}(t 8)] / Q}^{(2)}= & \gamma_{[[Q \bar{Q}(t 1)] Q}^{(2)}=0
\end{aligned}
$$

Apply NRQCD to FFs

> Input distributions are universal, non-perturbative:
Should, in principle, be extracted from experimental data
$>$ If NRQCD is valid - only proof to NNLO!
Nayak, Qiu and Sterman, 0509021
Replace unknown functions by a few unknown numbers - matrix elements!
>Apply NRQCD to the input distributions:

- All possible single parton FFs - up to NLO in α_{s}

Braaten, Yuan, 9303205,
Braaten, Lee, 0004228,

$$
\left.D_{g \rightarrow J / \psi}\left(z, \mu_{0}, m_{Q}\right) \rightarrow \sum_{[Q \bar{Q}(c)]} \hat{d}_{g \rightarrow[Q \bar{Q}(c)]}\left(z, \mu_{0}, m_{Q}\right)\left\langle\mathcal{O}_{[Q \bar{Q}(c)]}(0)\right\rangle\right|_{\mathrm{NRQCD}}
$$

- All possible heavy quark pair FFs - up to NLO in α_{s}

Kang, Qiu, Sterman, 1109.1520
YQM, Qiu, Zhang, 13xx.xxxx

- Divergences at NLO also confirm the correctness of evolution kernels
$\mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}\left(z, \zeta, \zeta^{\prime}, \mu_{0}, m_{Q}\right) \rightarrow \sum_{[Q \bar{Q}(c)]} \hat{d}_{[Q \bar{Q}(\kappa)] \rightarrow[Q \bar{Q}(c)]}\left(z, \zeta, \zeta^{\prime}, \mu_{0}, m_{Q}\right)\left\langle\mathcal{O}_{[Q \bar{Q}(c)]}(0)\right\rangle_{\mathrm{NRQCD}}$

Polarization of ${ }^{3} S_{1}^{[1]}$ channel

$>$ Fragmentation functions determine the polarization
Short-distance dynamics at $r \sim 1 / p_{T}$ is NOT sensitive to the details taken place at the scale of hadron wave function $\sim 1 \mathrm{fm}$
$>$ Heavy quark pair fragmentation functions at LO:

$p_{c} / 2+q_{l} p_{c} / 2-q_{l} p_{c} / 2-q_{2} p_{c} / 2+q_{2} \quad p_{c} / 2+q_{l} p_{c} / 2-q_{l} p_{c} / 2-q_{2} p_{c} / 2+q_{2}$
NRQCD to a singlet pair:

$$
\mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}=2 \mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}^{T}+\mathcal{D}_{[Q \bar{Q}(\kappa)] \rightarrow J / \psi}^{L}
$$

$$
\mathcal{D}_{[Q Q(a 8)] \rightarrow J / \psi}^{L}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\frac{1}{2 N^{2}} \frac{\left\langle O_{\left(\mathrm{S}_{1}\right)}^{J / \psi}\right\rangle}{3 m_{c}} \Delta\left(\zeta, \zeta^{\prime}\right) \frac{\alpha_{s}}{2 \pi} z(1-z)\left[\ln (r(z)+1)-\left(1-\frac{1}{1+r(z)}\right)\right]
$$

$$
\mathcal{D}_{[Q \bar{Q}(a 8)] \rightarrow J / \psi}^{T}\left(z, \zeta, \zeta^{\prime}, m_{Q}, \mu\right)=\frac{1}{2 N^{2}} \frac{\left\langle O_{1\left({ }^{(3)} S_{1}\right)}^{J / \psi}\right\rangle}{3 m_{c}} \Delta\left(\zeta, \zeta^{\prime}\right) \frac{\alpha_{s}}{2 \pi} z(1-z)\left[1-\frac{1}{1+r(z)}\right]
$$

$$
\text { where } \quad \Delta\left(\zeta, \zeta^{\prime}\right)=\frac{1}{4} \sum_{a, b} \delta(\zeta-a(1-z)) \delta\left(\zeta^{\prime}-b(1-z)\right) \quad, \quad r(z) \equiv \frac{z^{2} \mu^{2}}{4 m_{c}^{2}(1-z)^{2}}
$$

Polarization of ${ }^{3} S_{1}^{[1]}$ channel

> LO hard parts + LO fragmentation contributions:

LO heavy quark pair fragmentation contribution reproduces
the bulk of NLO color singlet contribution, and the polarization!

Relativistic corrections

> Leading v^{2} relativistic correction in NRQCD:

Fan, YQM, Chao, 0904.4025
Xu, Li, Liu, Zhang,1203.0207

Complete results:
Large p_{T} behavior:

$$
\begin{aligned}
& R^{(1)}\left({ }^{3} S_{1}^{[1]}\right)=\left.\frac{G\left({ }^{3} S_{1}^{[1]}\right)}{F\left({ }^{(3} S_{1}^{1])}\right)}\right|_{p_{r} \gg m}=\frac{1}{6}, \\
& R^{(1)}\left(S_{0}^{[8]}\right)=\left.\frac{G\left({ }^{1} S_{0}^{[8]}\right)}{F\left({ }^{[8} S_{0}^{[8]}\right)}\right|_{p_{\tau} \gg m}=-\frac{5}{6}, \\
& R^{(1)}\left({ }^{3} S_{1}^{[8]}\right)=\left.\frac{G\left(3^{3} S_{1}^{[8]}\right)}{F\left({ }^{3} S_{1}^{[8]}\right)}\right|_{p r \gg m}=-\frac{11}{6}, \\
& R^{(1)}\left({ }^{3} P^{[8]}\right)=\left.\frac{G\left({ }^{3} P^{[8]}\right)}{F\left({ }^{(3 P} P^{[8])}\right.}\right|_{p_{T} \gg m}=-\frac{31}{30},
\end{aligned}
$$

Large p_{T} approximation: dominant for $p_{T}>10 \mathrm{GeV}$; gives reasonable results for $p_{T}>6 \mathrm{GeV}$.

Relativistic corrections

YQM, Qiu, 13xx.xxxx

$$
R\left({ }^{1} S_{0}^{[8]}\right)=1-\frac{5}{6} \delta+\frac{259}{360} \delta^{2}-\frac{3229}{5040} \delta^{3}+\cdots .
$$

> \mathbf{v}^{2} all order corrections in pQCD factorization:

$$
\begin{aligned}
& P_{c}=P / 2+q \\
& P_{\bar{c}}=P / 2-q
\end{aligned}
$$

n	0	1	2	3	\cdots	∞
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{1} S_{0}^{[8]}\right)\right\|_{\delta=0.3}$	1	0.750	0.815	0.797	\cdots	0.801
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{1} S_{0}^{[8]}\right)\right\|_{\delta=0.1}$	1	0.917	0.924	0.923	\cdots	0.923

$$
R\left(S_{1}^{3}[8]\right)=1-\frac{11}{6} \delta+\frac{191}{72} \delta^{2}-\frac{167}{48} \delta^{3}+\cdots,
$$

n	0	1	2	3	4	\ldots	∞
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{3} S_{1}^{[8]}\right)\right\|_{\delta=0.3}$	1	0.450	0.689	0.595	0.630	\ldots	0.620
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{3} S_{1}^{[8]}\right)\right\|_{\delta=0.1}$	1	0.817	0.843	0.840	0.840	\ldots	0.840

$$
R\left({ }^{3} P^{[8]}\right)=\frac{2 R_{a}\left({ }^{3} P[8]\right.}{[8]}+R_{v}\left({ }^{3} P[8]\right), ~=1-\frac{31}{30} \delta+\frac{4111}{4200} \delta^{2}-\frac{4631}{5040} \delta^{3}+
$$

- Using leading p_{T} approximation - $\mathbf{O}\left(v^{2}\right)$ corrections reproduced
- Convergence of v^{2} expansion are found.

n	0	1	2	3	\cdots	∞
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{3} P^{[8]}\right)\right\|_{\delta=0.3}$	1	0.690	0.778	0.753	\cdots	0.759
$\left.\sum_{i=0}^{n} \delta^{i} R^{(i)}\left({ }^{3} P^{[8]}\right)\right\|_{\delta=0.1}$	1	0.897	0.906	0.906	\cdots	0.906

Summary

$>$ When $p_{T} \gg m_{Q}$ at collider energies, earlier models for calculating the production rate of heavy quarkonia are not perturbatively stable
LO in α_{s}-expansion may not be the LP term in $1 / \mathrm{p}_{\mathrm{T}}$-expansion
$>$ When $p_{T} \gg m_{Q}, 1 / p_{T}-$ power expansion before α_{s}-expansion pQCD factorization approach takes care of both $1 / \mathrm{p}_{\mathrm{T}}$-expansion and resummation of the large logarithms
> pQCD factorization approach and SCET approach seem to be consistent in the region where they both apply.
> Preliminary applications already show the power of pQCD factorization. More works, particularly, detailed comparisons with data are needed!

Thank you!

Anomalies from $/ / \psi$ polarization in NRQCD

> CS: LO V.S. higher order

- LO gives transverse polarization
- NLO and NNLO gives longitudinal polarization

Gong, Wang, 0805.2469 Lansberg, 0811.4005

> CO: LO V.S. higher order

- NLO corrections for J/psi polarization are worked out by three different groups
- Polarization at NLO can be significantly different from LO, depending on CO LDMEs

LO prediction:
Cho, Wise, 9408352
Beneke, Rothstein,
9509375, ..

Butensckön, Kniehl, 1201.1872

Chao,YQM,Shao,Wang,Zh ang, 1201.2675

Gong,Wan,Wang,Zhang, 1205.6682

