CMS Results for Quarkonium Production in 7 TeV pp Collisions

James Russ for the CMS Collaboration

- Why Do These Measurements?
 Issues in Hadroproduction
 - New CMS results for P-wave charmonium production
 - CMS results for Upsilon differential cross section in central-rapidity region

The Problem with Hadroproduction

- How to make a colorless hadron that contains two heavy quarks?
 -- many, many possibilities!
- current models: NRQCD, CSM, $k_{\rm T}$ Factorization
- Different predictions for polarization and excited-state production for charm and bottom
- NLO and NNLO corrections can be large and p_T dependent

Figure from J-P Lansberg, EJP C60, 693 (2009)

Two New CMS Contributions

- Ratio of Production Cross Sections for χ_{c_2} and χ_{c_1} P-wave excited states of charmonium for 7 < $p_T < 25$ GeV at $\sqrt{s} = 7$ TeV. (Eur.Phys.J. C72 (2012), 2251)
- Differential Cross Section Measurements for Prompt Production of Y(1S), Y(2S) and Y(3S) states with 0 < p_T < 30 GeV at $\sqrt{s} = 7$ TeV. (arXiv: 1303.5900)

Cross Section Measurements for P-wave states of Charmonium

 χ_c states decay into many final states. In CMS we measure $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+ + \mu^- + \gamma$

Experimental Challenges:

- 1) Rest-frame photon energies are 390 and 430 MeV for χ_{c_1} , χ_{c_2} . How can an energy-frontier detector measure such low-energy photons well enough to separate the two states?
- Answer: use photon conversions in the silicon tracker to get very high precision photon energy and direction *because* the p_T boost in hadroproduction brings the photons into the GeV energy range, good for conversion

More Experimental Issues

- χ_c states are produced promptly or from b-decays
 - use J/ψ vertex position to select prompt fraction
- χ_{co} decays into J/ ψ + γ are strongly suppressed but not zero
 - include this state in mass spectrum
- χ_{c_2} and χ_{c_1} acceptance and mass resolution functions differ slightly and acceptances are low.
 - efficiencies are a simulation challenge.
- The conversion reconstruction efficiency is quite low compared to using the EM calorimeter
- the LHC charm cross section is large and CMS is a superb high-rate detector, so we can use the high resolution of conversions for physics.

The Physics Goal:

• Measure the prompt production cross section ratio for χ_{c_2}/χ_{c_1} to test theoretical predictions.

$$R_{\rm p} \equiv \frac{\sigma(\rm pp \to \chi_{c2} + X)\mathcal{B}(\chi_{c2} \to J/\psi + \gamma)}{\sigma(\rm pp \to \chi_{c1} + X)\mathcal{B}(\chi_{c1} \to J/\psi + \gamma)} = \frac{N_{\chi_{c2}}}{N_{\chi_{c1}}} \cdot \frac{\varepsilon_1}{\varepsilon_2}$$

• We need four quantities. How to get them?

χ_c Mass Spectrum and Yields

 $\mu\mu\gamma$ mass spectra for two bins of $p_T(J/\psi)$

Line shapes agree well with data in all p_T bins.

Mass PDFs determined from simulation. Only normalization comes from fit to data. Table gives yields and statistical uncertainty.

$p_{\rm T}({\rm J}/\psi)$ [GeV/c]	$N_{\chi_{cl}}$	$N_{\chi_{c2}}$	$N_{\chi_{c2}}/N_{\chi_{c1}}$
7–9	618 ± 31	315 ± 24	0.510 ± 0.049
9-11	1680 ± 49	788 ± 37	0.469 ± 0.027
11-13	1819 ± 51	819 ± 38	0.451 ± 0.025
13-16	1767 ± 51	851 ± 39	0.482 ± 0.027
16-20	1269 ± 43	487 ± 30	0.384 ± 0.028
20-25	642 ± 31	236 ± 22	0.368 ± 0.040

23/04/2013

Finding the Acceptance Ratio

Have two of the four numbers. Now we need the detection efficiency ratio $\varepsilon_2/\varepsilon_1$.

- Assume χ production has same p_T spectrum as $\psi(2S)$
- Use unpolarized decays in simulation to get $\epsilon_2/\epsilon_1(p_T(J/\psi))$
- Study range of acceptance corrections due to possible spin states for J = 2 and J = 1 χ states.
- Have to consider several polarization frames, since polarization in one frame may appear as zero polarization in another. Compare Collins-Soper (CS) and helicity (HX) frames.

The Results

$p_{\rm T}(J/\psi)[{\rm GeV}/c]$	$\frac{\sigma(\chi_{c2})\mathcal{B}(\chi_{c2})}{\sigma(\chi_{c1})\mathcal{B}(\chi_{c1})}$	HX	CS
7–9	0.460 ± 0.044 (stat.) \pm 0.025 (syst.)	$^{+0.136}_{-0.121}$	+0.037 -0.023
9–11	$0.439\pm$ 0.025 (stat.) \pm 0.024 (syst.)	$^{+0.128}_{-0.119}$	$+0.052 \\ -0.035$
11–13	0.426 ± 0.024 (stat.) ± 0.017 (syst.)	$+0.125 \\ -0.117$	+0.059 -0.042
13-16	0.442 ± 0.025 (stat.) \pm 0.016 (syst.)	$^{+0.125}_{-0.121}$	$+0.065 \\ -0.044$
16-20	$0.377\pm$ 0.028 (stat.) \pm 0.015 (syst.)	$^{+0.106}_{-0.104}$	+0.059 -0.042
20–25	$0.379\pm$ 0.041 (stat.) \pm 0.022 (syst.)	$+0.094 \\ -0.097$	$+0.055 \\ -0.040$

- Ratio decreases slowly as $p_T(J/\psi)$ increases, but the effect is not dramatic.
- Polarization uncertainties are important. No experimental constraints yet.
- Other systematics: background model; signal shape model; p_T spectrum, and limited Monte Carlo statistics.
- Interplay between various systematic contributions varies from bin to bin. No one source dominates.

23/04/2013

Comparison to k_T Factorization Model

• Model predicts zero helicity for χ_{c1} and χ_{c2} , so spin ambiguity systematic uncertainties are greatly reduced.

 Trend of data with p_T agrees with model prediction, *but* there is a factor of 2 difference in the magnitude.

Comparison to NRQCD Model

 normalization agrees, but p_T trend does not agree well with data • No information from model about spin states for χ_{c1} and χ_{c2} , so all possibilities have to be considered.

• Treat data as unpolarized to match model. Green and blue dashed contours illustrate extreme ranges of spin effects in data.

• Red solid lines reflect color octet uncertainties in NRQCD calculation.

Summary of Charmonium Study

- Extending p_T range of ratio measurement illustrates relative strengths and weaknesses of two popular models
- First steps toward determining feed-down fraction from higher-lying states into χ_c channel are made. Biggest contribution expected from $\psi(2S)$. CMS cross section measurements $\Rightarrow <5\%$ of χ_{c1} and χ_{c2} yield comes from feed-down from $\psi(2S)$ decays if the feed-down fraction is the same as CDF measured.
- Next step is to measure the fraction of χ_c decays included in prompt J/ ψ sample. While photon conversion efficiencies largely cancel in the χ_{c1}/χ_{c2} ratio, they pose a big challenge for this project.

Upsilon Production at Large p_T

CMS 2010 Results arXiv: 1303.5900

• Like all hadroproduction, Upsilon production cross section peaks near M/2, then falls roughly exponentially.

• Are there different production mechanisms mixed through this region?

Models Tell Various Stories

• NRQCD (not shown) with adjustable parameters fits Y(1S) cross section for LHC and Tevatron for p_T < 30 GeV/c.

• CSM including NNLO diagrams fits Y(1S) cross section (Artoisenet, et al., Phys. Rev. Lett. 101, 152001 (2008)). Different orders have different p_T dependence.

Baranov expects transition to power law behavior at large p_T for k_T factorization model (S. Baranov, Phys. Rev. D **86**, 054015 (2012))

A Look at the CMS 2010 Data

Precision tracking from CMS detector gives good separation of the Y(nS) peaks over wide $|y^{Y}|$ range (o-2.4) with best resolution in central rapidity region

23/04/2013

Fiducial Cross Section in p_T

Data show that relative production of Y(nS) states changes rather significantly with p_T , perhaps due to feed-down from higher excitations into the Y(1S) and less so into the Y(2S).

• The fiducial cross section assumes unit acceptance. It displays the efficiency-corrected yields for muons that satisfy the event selection criteria:

$p_{\rm T}^{\mu} > 3.75 { m GeV}/c$	if		$ \eta^{\mu} < 0.8$,
$p_{\mathrm{T}}^{\mu} > 3.5 \mathrm{GeV}/c$	if	0.8 <	$ \eta^{\mu} < 1.6,$
$p_{\mathrm{T}}^{\mu} > 3.0 \mathrm{GeV}/c$	if	1.6 <	$ \eta^{\mu} < 2.4.$

• single muon efficiency $\epsilon(\eta, p_T)$ determined from data using Tag and Probe method

23/04/2013

Acceptance-Corrected $d\sigma/dp_T$

- Evidence from CMS polarization measurements is that polarization is small.
- Correct fiducial cross sections for acceptance assuming *zero* polarization
- All three states peak at $p_T \sim 4 \text{ GeV/c}$ and still show different slopes as p_T increases.

What About Rapidity Dependence?

• For the acceptance-corrected data, integrated over pT, there is very little $|y^{Y}|$ dependence in any of the Y(nS) data until $|y^{Y}| > 1.6$.

- At higher |y^Y| the cross section falls, as reported by LHCb.
- Are the y^Y and p_T variations independent?

Y(1S) $d\sigma/dp_T$ in $|y^{Y}|$ Slices

- Focus on highest-statistics sample: Y(1S)
- Divide data into $\Delta |y^{Y}|$ bins of 0.4 and display the acceptance-corrected p_{T} dependence.
- Note scale factors used to offset each slice. The evidence is that the p_T distributions are truly independent of y^Y, as a factorized production model would expect.

Comparison to Models: Y(1S), Y(2S)

Comparing the unpolarized differential cross section data to model predictions, one sees that most of the models match the Y(1S) dependence on p_T , but there is some tension for the Y(2S).

23/04/2013

Jim Russ - QWG2013

Is the Y(3S) Different?

Even though we now know there are $\chi_b(_{3}P)$ states that lie above the Y($_{3}S$), the feed-down into the Y($_{3}S$) is expected to be smaller than that to the Y($_{1}S$) or Y($_{2}S$).

These data do not suggest that the models do better for $Y(_3S)$ than for $Y(_2S)$ at large p_T .

What Do Production Ratios Say?

Ratios for $Y(_3S)/Y(_1S)$ and $Y(_2S)/Y(_1S)$ rise through the 5-20 GeV region. Then what happens? The data are suggestive but not definitive. There may be a break – or not. More data at higher p_T are needed to say.

23/04/2013

Jim Russ - QWG2013

Bottomonium Summary

- Detailed measurements of the p_T and y^Y behavior of Y(nS) production at 7 TeV show reasonable agreement with the popular models, e.g., CSM, NRQCD, and k_T -factorization.
- The production ratios of the acceptance-corrected $d\sigma/dp_T$ for Y(2S)/Y(1S) and Y(3S)/Y(1S) increase in the p_T interval 5 -20 GeV.

• At the largest p_T points for these data there is a suggestion of saturation of these ratios. Analysis of the 2011 data now underway at CMS will speak to the question of large p_T behavior.