X(3872) and Its Production at Hadron Colliders

Ce Meng Peking University In Collaboration with H. Han & K.T. Chao

QWG2013, 25th Apr., IHEP, Beijing

Outline

➢ Mini review of X(3872)

> X production at hadron colliders

➢ Summary

Experimental information

- 1st observed by Belle Collaboration in $B \rightarrow I/\psi \pi^+ \pi^- K$ Belle'03 Mass, width and quantum numbers: • $m_x = 3871.68 \pm 0.17 \text{ MeV}$ **PDG'12** $m_X - m_{D^0 D^{*0}} = -0.142 \pm 0.220 \text{ MeV}$ Tomaradze *et al.*'12 • $\Gamma < 1.2 \text{ MeV}$ CL = 90%**PDG'12** • $I^{PC} = 1^{++}$ or 2^{-+} $\checkmark I^{PC} = 2^{-+}$ is favored by the $\omega \rightarrow \pi^+ \pi^- \pi^0$ mass spectrum in $B \rightarrow X(3872)K \rightarrow J/\psi\omega(\pi^+\pi^-\pi^0)K$ [BaBar'10], but is excluded by the recent analysis on the angular correlations in $B \rightarrow$
 - $X(3872)K \rightarrow J/\psi\rho(\pi^+\pi^-)K$ by LHCb [arXiv:1302.6269, see Bressieux's talk]

Experimental information

Decay pattern:

• Well-established decay modes:

 $J/\psi\rho(\pi^{+}\pi^{-}), J/\psi\omega(\pi^{+}\pi^{-}\pi^{0}), D^{0}\overline{D}^{*0}/\overline{D}^{0}D^{*0}/D\overline{D}\pi, J/\psi\gamma$ Relative ratios of these 4 modes: 1: 1: 10: 0.3 PDG'12

✓ Large isospin violations

$$R_{\rho/\omega} = Br(X \to J/\psi\rho)/Br(X \to J/\psi\omega) \approx 1$$

 $\checkmark \operatorname{Br}(X \to J/\psi\rho) = \operatorname{Br}(X \to J/\psi\pi^+\pi^-) \equiv \operatorname{Br}_0 < 9\%$

B-production:

 $1 \times 10^{-4} < Br(B \to X(3872)K) < 3.2 \times 10^{-4} BaBar'05$ Br(B \to X(3872)K)Br₀ = (8.6 \pm 0.8) \times 10^{-6} PDG'12 2.6% < Br₀ < 9%

Experimental informations

- Hadro-production
- Large production rate: $\frac{\sigma(p\bar{p}\to X)\text{Br}_0}{\sigma(p\bar{p}\to\psi')}\frac{\epsilon_{\psi'}}{\epsilon_X} = (4.8 \pm 0.8)\% \text{ CDF'04}$ Similar behaviors to ψ' production in p_T distribution and ... D0 PRL'04 CMS arXiv:1302.3968, see Yi's talk

a. $p_T > 15 \text{ GeV b. ...}$

$D^0\overline{D}^{*0}$ molecule models

[Tornqvist'04, Voloshin'04, Swanson'04, Braaten'04, ...]

- > X(3872) is a loosely bound state of $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$
- The mass, quantum numbers and the large isospin violation can be understood naturally.
- The large production rate seems to be questionable
- ✓ Naively, $\sigma(X) \sim k_0^3$, where the relative momentum of $D^0 \overline{D}^{*0}$ in the bound state $k_0 = \sqrt{2\mu_{DD^*}|E_b|} < 40$ MeV
- ✓ Explicit calculations [Bignamini *et al*, PRL'09]: $\sigma_{CDF}^{th}(X) < 0.085 \text{ nb} \quad v.s. \quad \sigma_{CDF}^{ex}(X) \text{Br}_0 = 3.1 \pm 0.7 \text{ nb}$
- ✓ Artoisenet and Braaten [PRD'10] proposed that the rescattering effects of $D^0 \overline{D}^{*0}$ may enhance the rate to values consistent with the CDF data if the upper bound of the relative momentum of $D^0 \overline{D}^{*0}$ in the rescattering is as large as $3m_{\pi} \approx 400$ MeV

$\chi'_{c1} - D^0 \overline{D}^{*0}$ mixing model

Meng, Gao and Chao, hep-ph/0506222, to appear in PRD

- > X(3872) is a mixing state of χ'_{c1} and $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$ continuum
- Both the two components are substantial, and they may play different roles in the dynamics of X(3872).
- 1. The short distance (the *b* and *hadro*-) production and the quark annihilation decays of X(3872) proceed dominantly through the χ'_{c1} component.
- 2. The $D^0 \overline{D}^{*0}$ component is mainly in charge of the hadronic decays of X(3872) into $DD\pi/DD\gamma$ as well as $J/\psi\rho$ and $J/\psi\omega$.
- 3. The long distance coupled-channel effects between the two components could renormalize the short distance dynamics by a product factor $Z_{c\bar{c}}$, the equivalent probability of χ'_{c1} in X(3872).

$\chi'_{c1} - D^0 \overline{D}^{*0}$ mixing model

• *B* production rate: Meng, Gao and Chao'05 $\frac{\text{Br}(B \rightarrow \chi'_{c1}K)}{\text{Br}(B \rightarrow \chi_{c1}K)} = 0.75 - 1$

 $Br(B \rightarrow \chi_{c1}K) = (1, 3, 4)$ $Br(B \rightarrow \chi_{c1}'K) = (2-4) \times 10^{-4}$

• Rescattering of the $D^0 \overline{D}^{*0}$ component: Meng and Chao, PRD'07

 $\frac{\text{Br}(X \to J/\psi\rho)}{\text{Br}(X \to J/\psi\omega)} = 0.9-1.2$

• Mass problem:

Coupled-channel models

Li & Meng & Chao'09; Danilkin & Simonov'10

The sharp mass shift curve induced by the S-wave coupling lower the "bare" mass of χ'_{c1} towards the $D^0\overline{D}^{*0}$ threshold.

X production at hadron colliders

NRQCD factorization formula

- Mixing model (χ'_{c1} production mechanism): [Meng & Han & Chao, arXiv:1304.6710]
- Energy scales: $p_T, m_c \gg m_c v, m_c v^2, \Lambda_{QCD} \gg E_b, \Gamma_X \sim 1 \text{ MeV}$
- Factorization I: $\sigma(pp \to X(J/\psi\pi^+\pi^-)) = \sigma(pp \to \chi'_{c1}) \cdot k, \qquad k = Z_{c\bar{c}} Br_0$
- Factorization II: NRQCD Bodwin & Braaten & Lepage'95

$$d\sigma(pp \to \chi_{c1}') = \sum_{n} d\hat{\sigma}((c\bar{c})_{n}) \frac{\langle O_{n}^{\chi_{c1}} \rangle}{m_{c}^{2L_{n}}}$$
$$= \sum_{i,j,n} \int dx_{1} dx_{2} G_{i/p} G_{j/p} d\hat{\sigma}(ij \to (c\bar{c})_{n}) \left\langle O_{n}^{\chi_{c1}'} \right\rangle$$

 $n = {}^{3}P_{1}^{[1]} \& {}^{3}S_{1}^{[8]}$ at leading order in v for χ'_{c1} production

NRQCD factorization formula

Molecule model (Molecule production mechanism): Artoisenet & Braaten, PRD'09

$$d\sigma(pp \to X_{D^0\bar{D}^{*0}}) = d\hat{\sigma} \left({}^3S_1^{[1]}\right) \left\langle O_{{}^3S_1^{[1]}}^{D^0\bar{D}^{*0}} \right\rangle + d\hat{\sigma} \left({}^3S_1^{[8]}\right) \left\langle O_{{}^3S_1^{[8]}}^{D^0\bar{D}^{*0}} \right\rangle$$

- Color symmetry: $\left\langle O_{3S_{1}^{[1]}}^{D^{0}\overline{D}^{*0}} \right\rangle = 3 \left\langle O_{3S_{1}^{[8]}}^{D^{0}\overline{D}^{*0}} \right\rangle / 4$
- At NLO in α_s : $d\hat{\sigma} \left({}^3S_1^{[1]} \right) / d\hat{\sigma} \left({}^3S_1^{[8]} \right) \approx 5.3 \times 10^{-4}$ for CDF widow, thus [Meng & Han & Chao, arXiv:1304.6710]

$$d\sigma(pp \to X_{D^0\overline{D}^{*0}}) = d\hat{\sigma}\left({}^3S_1^{[8]}\right) \left\langle O_{3S_1^{[8]}}^{D^0\overline{D}^{*0}}\right\rangle$$

- ✓ The two models are different in combination of the $c\bar{c}$ channels in the factorization formula!
- One can compare the two models with the help of the CMS pT distribution!

NRQCD factorization formula

- NLO calculations:
- We choose $\mu_r = \mu_f = m_T = \sqrt{p_T^2 + 4m_c^2}$, $\mu_{NR} = m_c = 1.5 \pm 0.1$ GeV, and vary $\mu_{r,f}$ from $m_T/2$ to m_T to estimate the errors.
- The other details can be found in Ma & Wang & Chao'11 (MWC'11)
- > To compare our following results with the available ones for χ_{c1} production [MWC'11], we parameterize the matrix elements as

•
$$\left\langle O_{3P_{1}^{[1]}}^{\chi'_{c1}} \right\rangle = \left\langle O_{3P_{1}^{[1]}}^{\chi_{c1}} \right\rangle = \frac{9}{4\pi} |R'_{1P}(0)|^{2}, |R'_{1P}(0)|^{2} = 0.075 \text{ GeV}^{5}$$

- $r = m_c^2 \left(O_{3S_1^{[8]}}^{\chi'_{c1}} \right) / \left(O_{3P_1^{[1]}}^{\chi'_{c1}} \right)$ $(r_{1P} = 0.27 \pm 0.06, \text{MWC'11})$
- The cross section in the χ'_{c1} production mechanism is a simple function of r, k and p_T

Fit to the CMS p_T distribution $\sqrt{S} = 7 \text{ TeV}, \quad |y| > 1.2, \quad 10 \text{ GeV} < p_T < 30 \text{ GeV}$ $\succ \chi'_{c1}$ production mechanism: $r = 0.26 \pm 0.07$, $k = 0.014 \pm 0.006$ $\sigma_{\text{CMS}}^{\text{fit}}(p\bar{p} \to X(J/\psi\pi^{+}\pi^{-})) = 1.09^{+0.08}_{-0.12} \text{ nb} ((1.06 \pm 0.19 \text{ nb})_{\text{ex}})$ • The central values correspond $\chi^2/2 = 0.26$ • The value of r_{2P} for χ'_{c1} is almost the same as that for $\chi_{c1}(1P)$: $r_{1P} = 0.27 \pm 0.06$ [MWC'11] which strongly suggests that X(3872) be =7 TeV and |y| < 1.2for CMS Collaboration produced through its χ'_{c1} component **10**⁻¹ at short distance $\sigma/dp_T \times Br(X(3872) \rightarrow J/\psi_T$ Molecule production mechanism: 10^{-2} 35.8 $\left\langle O_{3S_{1}^{[8]}}^{D^{0}\overline{D}^{*0}} \right\rangle \operatorname{Br}_{0} = (6.0 \pm 0.6) 10^{-5} \, \mathrm{GeV^{3}}$ - $3P_1^{[1]}$ NLO CMS 10^{-3} r=0.26, k=0.014 $\gamma^2/3 = 1.03$ CMS Data 10-4 10 20 25 30 15

13

 p_T (GeV)

Predictions v.s. CDF data

 $\sqrt{S} = 1.96 \text{ TeV}, \qquad |y| > 0.6, \qquad p_{\mathrm{T}} > 5 \text{ GeV}$

 $\succ \chi'_{c1}$ production mechanism:

Inputs: r = 0.26, k = 0.014 $\sigma_{CDF}^{th}(p\bar{p} \rightarrow X(J/\psi\pi^{+}\pi^{-})) = 2.5 \pm 0.7 \text{ nb} (v.s. (3.1 \pm 0.7 \text{ nb})_{ex})$ The predicted p_T distribution of X(3872) is compared with that of ψ' [CDF, PRD'09] (see the diagram)

➢ Molecule production mechanism: $\sigma_{CDF}^{molecule} = 1.1 \pm 0.4 \text{ nb}$ 2.6 σ deviation from data

Both the CMS and the CDF data favor the χ'_{c1} production mechanism, but a little bit disfavor the molecule production mechanism.

Predictions v.s LHCb data

 $\sqrt{S} = 7 \text{ TeV},$ 2.5 < y < 4.5, 5 GeV < p_T < 20 GeV

 $\succ \chi'_{c1}$ productionmechanism:

Inputs: $r = 0.26, \ k = 0.014;$ $\sigma_{\text{LHCb}}^{\text{th-prompt}} (p\bar{p} \to X(J/\psi\pi^{+}\pi^{-})) = 9.4 \pm 2.2 \text{ nb}$ $v.s. \ \sigma_{\text{LHCb}}^{\text{inclusive}} = 5.4 \pm 1.4 \text{ nb}$ LHCb, PRL'11

- About 20% of data come from non-prompt contributions, thus our prediction is about 2 times larger than the data.
- Both the theoretical and the experimental uncertainties are large.
- More available data are expected to be analyzed [see Bressieux's talk]
- Molecule production mechanism:

 $\sigma_{\rm LHCb}^{\rm molecule} = 4.0 \pm 1.3 \text{ nb}$

Better than ours, but seems to be less meaningful since the predicted pT distribution at CMS is almost inconsistent with the data.

Single parameter fit

\succ Fitting k to the CMS			22 - 81		
data with fixed r	r	k	$\chi^2/3$	$\sigma_{\rm CDF}^{ m tn}({ m nb})$	$\sigma_{\rm LHCb}^{\rm tn}({\rm nb})$
	0.20	0.021	0.39	3.26	12.2
$(3.1 \pm 0.7 \text{ nb})_{CDF}^{ex}$	0.25	0.015	0.17	2.63	9.87
$(5.4 \pm 1.4 \text{ nb})_{LHCb}^{ex} \cdot 80\%$	0.30	0.012	0.20	2.28	8.56
\succ Fitting k to	0.35	0.010	0.27	2.06	7.72
B decay data	0.40	0.008	0.34	1.90	7.14

 $Br(B \to X(J/\psi\pi^+\pi^-)K) = Br(B \to \chi'_{c1}K) \cdot k$

 $= (8.6 \pm 0.8) \times 10^{-6}$ PDG'12

Br^{fit}($B \rightarrow \chi'_{c1}K$) = (3.7–5.7) × 10⁻⁴ Kalashnikova & Nefediev PRD'09 ∴ $k = Z_{c\bar{c}}Br_0 = 0.018 \pm 0.004$

✓ Window in the table: r = 0.20-0.26

✓ With a modest value $Br_0 = 5\%$ ∈ (2.6%–9%) $Z_{c\bar{c}} = 28\%$ -44%

Summary

- > Within the framework of NRQCD factorization formula, the prompt cross section of X(3872) is evaluated up to NLO in α_s in the mixing model:
- The CMS p_T distribution can be fitted very well with $\chi^2/2 = 0.26$.
- The obtained r_{2P} for χ'_{c1} is almost the same as r_{1P} for χ_{c1} [MWC'11], which strongly suggests that the X(3872) be produced through its χ'_{c1} component at short distance.
- The outcomes of the fit explain the CDF total cross section very well, however, the predicted cross section for the LHCb widow is larger than the data by a factor of 2, which might due to the large uncertainties.
- ⇒ By harmonizing the fit results with those in B decays, we get $k = Z_{c\bar{c}} \text{Br}(X \rightarrow J/\psi \pi^+ \pi^-) = 0.018 \pm 0.004, \quad r = 0.20-0.26,$ which could be important to understand the nature of X(3872).
- > The cross section in the molecule model is also evaluated at NLO in α_s , which is disfavored by both the CMS and the CDF data to some extent.

BackUp

Comparison with arXiv: 1303.3524

Butenschoen & He & Kniehl, arXiv: 1303.3524:

Set IV: fit two matrix elements to both the CMS and CDF data

