QWG meeting, 22-26 April 2013, IHEP, Beijing

Charged bottomonium-like states at Belle

Roman Mizuk
ITEP, Moscow

Content

Introduction to Z_{b} states

PRELIMINARY

Observation of $Z_{b} \rightarrow B \bar{B}^{*}, B^{*} \bar{B}^{*}$

Dalitz plot analysis of $\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{0} \pi^{0}$

6D amplitude analysis of $\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$

Anomalies in $\Upsilon(5 \mathrm{~S}) \rightarrow(\mathrm{b} \overline{\mathrm{b}}) \pi^{+} \pi^{-}$transitions

Belle PRL100,112001(2008) ~100
$\Gamma\left[\Upsilon(5 S) \rightarrow \Upsilon(1,2,3 S) \pi^{+} \pi^{-}\right] \gg \Gamma\left[\Upsilon(2,3,4 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}\right]$
\Leftarrow Rescattering of on-shell $\mathrm{B}^{(*)} \overline{\mathrm{B}}^{(*)}$?

Anomalies in $\Upsilon(5 \mathrm{~S}) \rightarrow(\mathrm{b} \overline{\mathrm{b}}) \pi^{+} \pi^{-}$transitions

> Belle PRL108,032001(2012) $\Upsilon(5 S) \rightarrow h_{b}(1,2 P) \pi^{+} \pi^{-}$are not suppressed Heavy Quarksymmetry
$h_{b}(n P)$ production mechanism could be exotic.

Resonant structure of $\Upsilon(5 \mathrm{~S}) \rightarrow(\mathrm{b} \overline{\mathrm{b}}) \pi^{+} \pi^{-}$

Fit results
Average over 5 channels
$M_{1}=10607.2 \pm 2.0 \mathrm{MeV}$
$\Gamma_{1}=18.4 \pm 2.4 \mathrm{MeV}$

Angular analysis \Rightarrow both states are $\mathbf{J}^{\mathbf{P}}=\mathbf{1}^{+} \quad$ Decays $\Rightarrow \mathbf{I}^{\mathbf{G}}=\mathbf{1}^{+}\left(\mathrm{C}=-\right.$ for $\left.\mathrm{Z}_{\mathrm{b}}^{0}\right)$

Proximity to thresholds favors molecule over tetraquark

Phase btw Z_{b} and Z_{b}^{\prime} amplitudes is $\sim 0^{\circ}$ for $\Upsilon(n S) \pi \pi$ and $\sim 180^{\circ}$ for $h_{b}(\mathrm{mP}) \pi \pi$

Fit results
Average over 5 channels

$$
\begin{aligned}
& M_{1}=10607.2 \pm 2.0 \mathrm{MeV} \\
& \Gamma_{1}=18.4 \pm 2.4 \mathrm{MeV} \\
& \mathrm{M}_{\mathrm{zb}}-\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{B}^{*}}\right)=+2.6 \pm 2.1 \mathrm{MeV} \\
& \mathrm{M}_{2}=10652.2 \pm 1.5 \mathrm{MeV} \\
& \Gamma_{2}=11.5 \pm 2.2 \mathrm{MeV} \\
& \mathrm{M}_{\mathrm{zb}^{\prime}}-2 \mathrm{M}_{\mathrm{B}^{*}}=+1.8 \pm 1.7 \mathrm{MeV}
\end{aligned}
$$

Angular analysis \Rightarrow both states are $\mathbf{J}^{\mathbf{P}}=\mathbf{1}^{+} \quad$ Decays $\Rightarrow \mathbf{I}^{\mathbf{G}}=\mathbf{1}^{+}\left(\mathrm{C}=-\right.$ for $\left.\mathrm{Z}_{b}^{0}\right)$

Proximity to thresholds favors molecule over tetraquark

$$
\begin{aligned}
& z_{b} \sim\left|B B^{*}\right\rangle=\mid \\
& S \text {-wave } \\
& z_{b}^{\prime} \sim\left|B^{*} B^{*}\right\rangle=14
\end{aligned}
$$

Phase btw Z_{b} and Z_{b}^{\prime} amplitudes is $\sim 0^{\circ}$ for $\Upsilon(\mathrm{nS}) \pi \pi$ and $\sim 180^{\circ}$ for $h_{b}(\mathrm{mP}) \pi \pi$
Properties of Z_{b} states are consistent with molecular structure.

Observation of $Z_{b} \rightarrow B \bar{B}^{*}, B * \bar{B}^{*}$

Study of $\Upsilon(5 S) \rightarrow B \bar{B} \pi, B \bar{B}^{*} \pi, B^{*} \bar{B}^{*} \pi$

$\mathrm{BF}\left[\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}^{(*)} \overline{\mathrm{B}}^{(*)} \pi\right] \quad$ Belle $121.4 \mathrm{fb}^{-1} \quad$ significance
PRD81,112003(2010)
Belle $23.6 \mathrm{fb}^{-1}$

$\mathrm{B} \overline{\mathrm{B}}$	$<0.60 \%$ at 90% C.L.		$(0 \pm 1.2) \%$
$\mathrm{~B}^{*}+\mathrm{B}^{*}$	$(4.25 \pm 0.44 \pm 0.69) \%$	9.3σ	$(7.3 \pm 2.3) \%$
$\mathrm{~B}^{*} \overline{\mathrm{~B}}^{*}$	$(2.12 \pm 0.29 \pm 0.36) \%$	5.7σ	$(1.0 \pm 1.4) \%$

First observation, consistent with previous measurement.

Observation of $Z_{b} \rightarrow B \bar{B}^{*}$ and $Z_{b}{ }^{\prime} \rightarrow B^{*} \bar{B}^{*}$

arXiv:1209.6450

Channel	Fraction, \%	
	$Z_{b}(10610)$	$Z_{b}(10650)$
$\Upsilon(1 S) \pi^{+}$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2 S) \pi^{+}$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3 S) \pi^{+}$	2.15 ± 0.56	1.64 ± 0.40
$h_{b}(1 P) \pi^{+}$	2.81 ± 1.10	7.43 ± 2.70
$h_{b}(2 P) \pi^{+}$	4.34 ± 2.07	14.8 ± 6.22
$B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}$	86.0 ± 3.6	7^{-}
$B^{*+} \bar{B}^{* 0}$	-	73.4 ± 7.0

$B F\left[Z_{b}{ }^{\prime} \rightarrow B \bar{B}^{*}\right]=(25 \pm 10) \%$ insignificant
If included, other fractions of $Z_{b}{ }^{\prime}$ are reduced by 1.33.
$Z_{b}{ }^{\prime} \rightarrow B \bar{B}^{*}$ is suppressed w.r.t. $B^{*} \bar{B}^{*}$ despite much larger PHSP.
Explanations:
Molecule \Rightarrow admixture of $B \overline{\mathrm{~B}}^{*}$ in $\mathrm{Z}_{\mathrm{b}}{ }^{\prime}$ is small. Challenging for tetraquark?

Dalitz plot analysis of $\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{0} \pi^{0}$

Observation of $\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{0} \pi^{0}$

First observations

$$
\left.\begin{array}{l}
\text { BF[} \left.\Upsilon(5 S) \rightarrow \Upsilon(1 S) \pi^{0} \pi^{0}\right]=(2.25 \pm 0.11 \pm 0.20) \times 10^{-3} \\
B F\left[\Upsilon(5 S) \rightarrow \Upsilon(2 S) \pi^{0} \pi^{0}\right]=(3.79 \pm 0.24 \pm 0.49) \times 10^{-3}
\end{array}\right\} \text { arxiv:1207.4345 }
$$

380 events 370 events 50 events
C.f. $\quad \mathrm{BF}\left[\Upsilon(5 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}\right]=(4.45 \pm 0.16 \pm 0.35) \times 10^{-3}$

BF[$\left.\Upsilon(5 S) \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-}\right]=(7.97 \pm 0.31 \pm 0.96) \times 10^{-3}$
BF[$\left.\Upsilon(5 S) \rightarrow \Upsilon(3 S) \pi^{+} \pi^{-}\right]=(2.88 \pm 0.19 \pm 0.36) \times 10^{-3}$
In agreement with isospin relations.

Dalitz plot analysis of $\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(\mathrm{nS}) \pi^{0} \pi^{0}$

Analysis procedure is the same as for charged pions

$$
\mathbf{S}(\mathbf{s} 1, \mathbf{s 2})=\mathbf{A}\left(\mathbf{Z}_{\mathbf{b} 1}\right)+\mathbf{A}\left(\mathbf{Z}_{\mathbf{b} 2}\right)+\mathbf{A}\left(\mathbf{f}_{\mathbf{o}}(\mathbf{9 8 0})\right)+\mathbf{A}\left(\mathbf{f}_{\mathbf{2}}(\mathbf{1 2 7 5})\right)+\mathbf{A}_{\mathrm{NR}}
$$

Results of Dalitz plot analysis

Fit fractions

	$\Upsilon(1 S)$	$\Upsilon(2 S)$		$\Upsilon(3 S)$
				solution A
$Z_{b}(10610)^{0}$	<3.5	$13.5 \pm 4.0 \pm 1.8$	solution B	
$Z_{b}(10650)^{0}$	<3.5	<7	$<6.1 \pm 3.6$	$44 \pm 11 \pm 3$
C.f. arxiv:1207.4345				
$Z_{b}(10610)^{+}$	$2.54_{-0.75}^{+0.87}$			
$Z_{b}(10650)^{+}$	$1.04_{-0.33}^{+0.65}$	$19.6_{-3.2}^{+4.0}$	<4.2 (90\% C.L.)	

Fit fractions of neutral and charged $Z_{b} s$ are consistent

	$\Upsilon(2 S) \pi^{0}$	$\Upsilon(3 S) \pi^{0}$	Combined
Significance of $Z_{b}(10610)$	4.9σ	4.3σ	6.5σ
(including systematics)			observation of $Z_{b}(10610)^{0}$

$\Upsilon(n S) \pi^{0} \pi^{0}$ channels are consistent with Z_{b} states being isotriplets

6D amplitude analysis of $\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}$

Spin-parity of Z_{b} states

Example : $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{Z}_{\mathrm{b}}{ }^{+}(10610) \pi^{-} \rightarrow\left[\mathrm{r}(2 \mathrm{~S}) \pi^{+}\right] \pi^{-}$

$$
\theta_{\mathrm{i}}=\angle\left(\pi_{\mathrm{i}}, \mathrm{e}^{+}\right), \phi=\angle\left[\operatorname{plane}\left(\pi_{1}, \mathrm{e}^{+}\right), \text {plane }\left(\pi_{1}, \pi_{2}\right)\right]
$$

Color coding: $J^{P}=1^{+} 1^{-} 2^{+} 2^{-}$($0^{ \pm}$is forbidden by parity conservation)
All angular distributions are consistent with $J^{\mathrm{P}}=1^{+}$for $\mathrm{Z}_{\mathrm{b}}(10610) \& \mathrm{Z}_{\mathrm{b}}(10650)$. All other J^{P} with $\mathrm{J} \leq 2$ are disfavored at typically 3σ level.
$\Upsilon(5 S) \rightarrow \Upsilon(n S)\left(\rightarrow \mu^{+} \mu^{-}\right) \pi^{+} \pi^{-}$amplitude analysis

12-4 (energy-momentum) - $1(\mathrm{r}(\mathrm{nS})$ mass) -1 (rotation around beam axis) $=6$ d.o.f. e.g. $\mathrm{M}^{2}(\Upsilon(\mathrm{nS}) \pi), \mathrm{M}^{2}\left(\pi^{+} \pi^{-}\right)$and 4 angles
difference w.r.t. previous analysis

Amplitudes in Lorentz invariant form. Background: $\Upsilon(\mathrm{nS})$ sidebands. Efficiency: integrate PDFs using reconstructed phase-space MC (non-parametric).

Comparison of spin-parity hypotheses

Clear picture of interference between Z_{b} and non-resonant S -wave amplitude

Z_{b} helicity angle $\sim \mathrm{M}^{2}\left(\pi^{+} \pi^{-}\right)$

$$
\mathrm{Z}_{\mathrm{b}} \rightarrow \Upsilon(\mathrm{nS}) \pi \begin{cases}1^{+} & \text {S-wave } \\ 1^{-} & \text {P-wave } \\ 2^{+} & \text {D-wave } \\ 2^{-} & \text {P-wave }\end{cases}
$$

$\Rightarrow \mathrm{A}_{\mathrm{zb}}$ is \sim independent on $\mathrm{M}^{2}\left(\pi^{+} \pi^{-}\right)$for 1^{+}, other hypotheses change sign over $\mathrm{M}^{2}\left(\pi^{+} \pi^{-}\right)$

Interference region has high sensitivity.
Useful projection to explore "deficit" due to interference.

Comparison of spin-parity hypotheses

Best discriminating power is in $\Upsilon(2 S)$ channel where $A_{z b}$ and $A_{\text {non-res }}$ are of similar size.
Spin-parity of $Z_{b}(10610)$ and $Z_{b}(10650)$ is $\mathbf{1}^{+}$. All other $J \leq 2$ are excluded. As expected for S-wave molecule.

Angular projections of 6D fit

\angle [plane $\left(\pi_{1}\right.$, Z-axis) , plane $\left.\left(\pi^{+} \pi^{-}\right)\right]$
1^{+}hypotheses describe data very well

Mass projections of 6D fit

Origin of structure at threshold?

1. Threshold effect

Chen Liu PRD84,094003(2011)

Danilkin Orlovsky Simonov PRD85,034012(2012)
2. Coupled-channel resonance multiple re-scatterings \Rightarrow pole

3. Deuteron-like molecule $\pi, \rho, \omega, \sigma$ exchange

Ohkoda et al arxiv:1111.2921

Summary

$Z_{b}(10610)$ and $Z_{b}(10650)$ states observed in 5 decay modes:

$$
\Upsilon(1 \mathrm{~S}) \pi^{+}, \Upsilon(2 \mathrm{~S}) \pi^{+}, \Upsilon(3 \mathrm{~S}) \pi^{+}, \mathrm{h}_{\mathrm{b}}(1 \mathrm{P}) \pi^{+}, \mathrm{h}_{\mathrm{b}}(2 \mathrm{P}) \pi^{+}
$$

Masses close to BB^{*} and $\mathrm{B}^{*} \mathrm{~B}^{*}$ thresholds.

Observation of $\mathrm{Z}_{\mathrm{b}}(10610)^{ \pm} \rightarrow \mathrm{BB}^{*}, \mathrm{Z}_{\mathrm{b}}(10650)^{ \pm} \rightarrow \mathrm{B}^{*} \mathrm{~B}^{*}$ Dominant modes: $\mathrm{BF} \sim 80 \%$

$$
\mathrm{Z}_{\mathrm{b}}(10650)^{ \pm} \rightarrow \mathrm{B} \overline{\mathrm{~B}}^{*} \text { is suppressed "smoking gun" of } \begin{aligned}
& \text { molecular structure? }
\end{aligned}
$$

Dalitz plot analysis of $\Upsilon(n S) \pi^{0} \pi^{0}$ consistent with $\Upsilon(n S) \pi^{+} \pi^{-}$, observation of $\mathrm{Z}_{\mathrm{b}}(10610)^{0}$

6D amplitude analysis $\quad \mathrm{Z}_{\mathrm{b}}$ spin-parity is unambiguously 1+

All experimental data point to molecular structure of Z_{b}.
Fit to data with various predictions is crucial to discriminate dynamical model. Collaboration btw. theory and experiment.
Z_{b} - very rich phenomenological objects, can help to understand highly excited states?

Back-up

Fit projections for $\Upsilon(1 S) \pi^{+} \pi^{-}$

 $J^{P}=1^{+}$

Fit projections for $\Upsilon(2 S) \pi^{+} \pi^{-}$

$J^{P}=1^{+}$

Fit projections for $\Upsilon(3 S) \pi^{+} \pi^{-}$

$\mathrm{J}^{\mathrm{P}}=1^{+}$

Trigger

Observation of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}$ above DD $^{-}$threshold by CLEOc
Ryan Mitchell @ CHARM2010

> Production of h_{c} is unsuppressed relative to J / ψ.

Enhancement @ Y(4260)?

Belle sees $\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon \pi^{+} \pi^{-} \Rightarrow$ should search for $\Upsilon(5 S) \rightarrow h_{b} \pi^{+} \pi^{-}$

