

Conventional cc and ccq at Belle

Vishal Bhardwaj, NWU

(for Belle Collaboration)

QUG Workshop

22-26 April 2013

Outline

- η_c in $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$
- Observation of $\Psi(4040)$ and $\Psi(4160)$ in $e^+e^- \rightarrow \gamma_{ISR} J/\Psi \eta$
- Evidence of X(3823): missing Ψ_2
- Doubly charmed baryon search

QCD : real particles are color singlet

Baryons are red-bluegreen triplets

Mesons are coloranticolor pairs

π=ūd

Other possible combinations of quarks and gluons :

Pentaquark

S= +1 Baryon

Λ=usd

H di-Baryon

Tightly bound 6 quark state

Glueball Color-singlet multigluon bound state

Tetraquark

Tightly bound diquark & anti-diquark

artistic illustration³

QCD : real particles are color singlet

∧=usd

Mesons are coloranticolor pairs \overline{u} d $\pi=\overline{u}d$

Other possible combinations of quarks and gluons :

Pentaquark	H di-Baryon	Glueball g
S= +1 Baryon	Tightly bound 6 quark state	Color-singlet multi- gluon bound state
Tetraquark Tightly bound diquark & anti-diquark	Molecule loosely bound meson- antimeson "molecule"	qq -gluon hybrid mesons

Covered by C.P. Shen on Monday

For exotic states in bottomonium, stay tune for Roman's talk on Friday

artistic illustration⁴

Charmonium Spectroscopy

- Mass and width measurement of η_c in $\gamma\gamma \rightarrow \eta'\pi\pi$ Belle, PRD 86,052002 (2012)
- Observation of $\Psi(4040)$ and $\Psi(4160)$ in $J/\Psi\eta$ via ISR Belle, PRD 87, 051101(R)(2013)
- First evidence of $\Psi_2 \rightarrow \chi_{c1} \gamma$ arXiv:1304.3975

cc̄ spectrum

Previously measured η_c parameters

Experiment	Process	Mass, MeV/c ²	Width, MeV/c ²
E835 2001	p ρ →γγ	$2984.1 \pm 2.1 \pm 1.0$	$20.4^{+7.7}_{-6.7}\pm2.0$
BES 2003	$J/\Psi \rightarrow \gamma \eta_c$	$2977.5 \pm 1.0 \pm 1.2$	$17.0 \pm 3.7 \pm 7.4$
CLEO 2004	γγ →K _s ⁰ K⁺π⁻	$2981.8 \pm 1.3 \pm 1.5$	$24.8 \pm 3.4 \pm 3.5$
Belle 2008	γγ → hadrons	$2986.1 \pm 1.0 \pm 2.5$	$28.1 \pm 3.2 \pm 2.2$
BaBar 2008	Β → Κ <i>Κ</i> πΚ ^(*)	$2985.8 \pm 1.5 \pm 3.1$	$36.3^{+3.7}_{-3.6}\pm4.4$
Belle 2008	γγ →K _s ⁰ K⁺π⁻	$2981.4 \pm 0.5 \pm 0.4$	$36.6 \pm 1.5 \pm 2.0$
BaBar 2010	γγ →K _s ⁰ K⁺π⁻	$2982.5 \pm 0.4 \pm 1.4$	$32.2 \pm 1.1 \pm 1.3$
BaBar 2011	γγ → K ⁻ K ⁺ π ⁻ π ⁺ π ⁰	$2984.5 \pm 0.8 \pm 3.1$	$36.2 \pm 2.8 \pm 3.0$
Belle 2011	$B^{\pm} \rightarrow K^{\pm}(K_{S}^{0} K^{\pm} \pi^{\mp})$	$2985.4 \pm 1.5^{+0.5}_{-2.0}$	$35.1 \pm 3.1^{+1.0}_{-1.6}$
PDG	World average	2981.0±1.1	29.7±1.0

Largest **Smallest** Nearby

Some measurements are ~ $5 MeV/c^2$ (mass) or ~ $10 MeV/c^2$ (width) away from the PDG average

 $\eta_c \text{ in } \gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measurement of mass and width in η_c →η'π⁺π⁻ in γγ can provide useful information.
 No direct measurement of ΓγγxB for the decay η_c →η'π⁺π⁻ is available so far.

 η_c in $\gamma\gamma \rightarrow \eta'\pi^+\pi^-$

No interference between η_c and non-resonant background is assumed.

Parameters	Belle	PDG
M, MeV/c²	2982.7±1.8±2.2	2981.0±1.1
Γ, MeV/c²	37.8 ^{+5.8} _{-5.3} ±2.8	29.7±1.0
Γ _{γγ} ℬ, eV/c²	50.5 ^{+4.2} _{-4.1} ±5.6	143.1±60.1*
<i>B</i> , %	0.87±0.20 [†]	2.7±1.1

- Fit with interference is also tried.
- \succ Results of mass and width of η_c are almost same.
- Possible difference has been added as a systematic uncertainty.
- Improvement in the branching fraction is striking.

^{*}Using indirect measurement, $\Gamma_{\gamma\gamma}$ and $\mathcal{B}(\eta_c \rightarrow \eta' \pi^+ \pi^-)$ measured separately. [†] $\Gamma_{\gamma\gamma}$ is determined using $\Gamma_{\gamma\gamma}\Gamma_{\kappa\bar{\kappa}\pi}/\Gamma_{total}$ and $\Gamma_{\kappa\bar{\kappa}\pi}/\Gamma_{total}$

 $e^+e^- \rightarrow \gamma_{ISR} J/\Psi \eta$ process

- Many Y-particles have been found in $J/\Psi \pi^+ \pi^-$ and $\Psi' \pi^+ \pi^-$ modes.
- $J/\Psi\eta$ mode has not yet been visited.

- First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay into $J/\Psi\eta$
- Their dominant decay modes are known to be DD, D*D, D*D, D*D, D*D, D*T, as seen at BaBar. CLEO and Belle.
- No evidence for the Y(4260), Y (4360), Ψ(4415) or Y(4660) in the J/Ψη final states. 9

♦ No $\Psi(4040)$ or $\Psi(4160)$ in $J/\Psi\eta$ seen in $B \rightarrow J/\Psi\eta K$ study

- ★ Assuming that $\mathcal{B}(B \rightarrow \Psi(4040 \text{ or } 4160)K) = \mathcal{B}(B \rightarrow \Psi'K)$, expected signal yield is 5~20 events for $\Psi(4040 \text{ or } 4160)$ in my own estimation*.
- In B decay, peak(s) may not become apparent considering their natural width.
- Thus both results seem to be not contradicting with each other.

*Taking $\Gamma_{ee} \sim 0.8$ keV from PDG $\mathcal{B}(\Psi' \rightarrow J/\Psi \eta) = 3.6 \pm 0.1\%^{PDG}$ $\mathcal{B}(\Psi(4040) \rightarrow J/\Psi \eta) \sim 0.6\%$ or 1.4% and $\mathcal{B}(\Psi(4160) \rightarrow J/\Psi \eta) \sim 0.5\%$ or 1.7%

$B \rightarrow \chi_{c1} \gamma K$ and $B \rightarrow \chi_{c2} \gamma K$

- * $\chi_{c1}\gamma$ and $\chi_{c2}\gamma$: suitable final state to look for either *X(3872)*'s C-odd partner or unseen charmonium.
- * "B decay" is the proper process for such purpose.
- Theory predicts ³D₂ cc̄ state to lie around ~3810-3840 MeV/c² mass and be narrow.

Partial width, $\Gamma(\Psi_2 \rightarrow \chi_{c1} \gamma) = 260$ keV.

Along with this, there should be ${}^{3}D_{3}$ cc̄ state lying around ~ 3830-3880 MeV/c² mass and will decay into $\chi_{c2}\gamma$.

Partial width, $\Gamma(\Psi_3 \rightarrow \chi_{c2} \gamma) = 286$ keV.

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), PRD 69, 094019 (2004)

✓ With current statistics, we expect to find some hint of Ψ_2 and Ψ_3 .

Search for new exotic states in $\chi_{c1}\gamma$ and $\chi_{c2}\gamma$ by scanning $M_{\chi c1, c2\gamma}$ (mass distribution) for narrow peak.

arXiv:1304.3975

New state @ 3823

 $\Gamma = 1.7\pm5.5$ MeV if fitted, poor sensitivity

 $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$

arXiv:1304.3975

Simultaneous fit to $B^+ \rightarrow X(3823)K^+$ and $B^0 \rightarrow X(3823)K_S^0$

Mean : 3823.1 ± 1.8 (stat) ± 0.7 (syst) MeV/c²

Γ: 1.7 ± 5.5 (stat) MeV/c²
 (Γ< 24 MeV @ 90% UL)*

* Using frequentist method

Statistics not sufficient for width estimation and angular analysis.

Along with this $B \rightarrow (\chi_{c2}\gamma)$ K study is also performed No significant peak is observed and we measured U.L. on $\mathcal{B}(B \rightarrow X(3823)K).\mathcal{B}(X(3823) \rightarrow \chi_{c2}\gamma))$

$$\frac{\Gamma(X(3823) \to \chi_{c2} \gamma)}{\Gamma(X(3823) \to \chi_{c1} \gamma)} < 0.41 \ (@ 90\% \ CL)$$

Let's see if this state can be interpreted as one of the unseen charmonia.¹³

Interpretation of X(3823) as Ψ_2

TABLE III: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The penultimate column holds an estimate of the spin splitting due to tensor and spin-orbit forces in a single-channel potential model. The last column gives the spin splitting induced by communication with open-charm states, for an initially unsplit multiplet.

State	Mass	Centroid	Splitting (Potential)	${ m Splitting} \ ({ m Induced})$
1^1S_0	2979.9^{a}	a oca ch	-90.5	+2.8
1^3S_1	3096.9^{a}	3 067.6-	+30.2	-0.9
$1^{3}P_{0}$	3415.3^{a}		-114.9^{e}	+5.9
$1^{3}P_{1}$	3510.5^{a}	9 505 96	-11.6^{e}	-2.0
$1^1 P_1$	3 5 2 5.3	3 323.3	$+1.5^{e}$	+0.5
$1^{3}P_{2}$	3556.2^{a}		-31.9^{e}	-0.3
2^1S_0	3637.7^{a}	a ana ak	-50.4	+15.7
2^3S_1	3686.0^{a}	3673.9	+16.8	-5.2
$1^{3}D_{1}$	3769.9^{ab}		-40	-39.9
$1^{\circ}D_2$	3830.6	(2015)d	0	-2.7
$1^1 D_2$	3838.0	(3013)	0	+4.2
$1^{3}D_{3}$	3868.3		+20	+19.0
$2^{3}P_{0}$	3931.9		-90	+10
$2^{3}P_{1}$	4007.5	accod	-8	+28.4
$2^1 P_1$	3968.0	9 908	0	-11.9
$2^3 P_2$	3966.5		+25	-33.1

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002),

PRD 69, 094019 (2004)

Three states with similar mass (predicted): ${}^{3}D_{2}$, ${}^{1}D_{2}$, ${}^{3}D_{3}$

- ¹D₂ excluded due to C conservation in EM decays.
- ${}^{3}D_{3}$ doesn't have E1 transition to $\chi_{c1}\gamma$
- ³D₂ seems to be appropriate
- > Ψ_2 below $D\bar{D}^*$ threshold: expected to have narrow decay width of 300-400 keV
- $\succ \Psi_2 \rightarrow DD$ is forbidden due to parity
- > Mostly decaying into $\chi_{c1}\gamma$.

✓ The observed peak (@3823) has not been seen in $D\bar{D} ({}^{3}D_{2}$ → DD is expected). ✓ $\frac{\Gamma(X(3823) \rightarrow \chi_{c2} \gamma)}{\Gamma(X(3823) \rightarrow \chi_{c1} \gamma)} < 0.41$ (@ 90% CL), Expected $\frac{\Gamma(\Psi_{2} \rightarrow \chi_{c2} \gamma)}{\Gamma(\Psi_{2} \rightarrow \chi_{c1} \gamma)} \sim 0.2$ (model dependent) If we assume, $\mathcal{B}(\Psi_{2} \rightarrow \chi_{c1} \gamma) = 0.64$ PRD 55, 4001 (1997), PLB 395, 107 (1997)

 $\frac{BR(B \rightarrow \Psi_2 K)}{BR(B \rightarrow \Psi' K)} \sim 0.02$ Factorization penalty similar to the one observed in $B \rightarrow \chi_{c2} K$

 $\frac{BR(B \rightarrow \chi_{c2}K)}{BR(B \rightarrow \chi_{c1}K)} = 0.022 \pm 0.007$

Belle, PRL 107, 091803 (2011)

✓ Suppression w.r.t. to $J^{PC}=1^{--}$, similar to the observed suppression of $J^{PC}=2^{++}$ w.r.t. $J^{PC}=1^{++}$.

X(3823) seems to be the missing Ψ_2 from the charmonium spectrum.

New member added

Search For Doubly Charmed Baryon

Doubly charmed Baryon $(\Xi_{cc}^{+})^{r}$

Doubly charmed states combine two extreme regimes inside them:

- i) Slow relative motion of two heavy quark, as in charmonium
- ii) Fast motion of light quark.

Doubly charmed baryons provide a new window for understanding the structure of all baryons

- Lightest doubly-charmed baryons can exist with either quark content ccu, Ξ_{cc}^{++} or ccd, Ξ_{cc}^{+} .
- Models generally predict mass range of 3.52-3.66 for J^P=1/2⁺ ground state and 3.636-3.66 GeV for J^P=3/2⁺ excited state.

- SELEX observed statistically compelling high mass states near 3.6 GeV/c²
- Evidence of Ξ_{cc}^+ in $\Lambda_c^+ K^- \pi^+$ and $pD^+ K^-$
- Mass of Ξ_{cc}^{+} : 3518.9± 0.9 MeV/c²
- τ(measured) < τ(theory)

Doubly charmed Baryon (Ξ_{cc}^{+})

Doubly charmed states combine two extreme regimes inside them:

- i) Slow relative motion of two heavy quark, as in charmonium
- ii) Fast motion of light quark.

Doubly charmed baryons provide a new window for understanding the structure of all baryons

- Lightest doubly-charmed baryons can exist with either quark content ccu, Ξ_{cc}^{++} or ccd, Ξ_{cc}^{+} .
- Models generally predict mass range of 3.52-3.66 for J^P=1/2⁺ ground state and 3.636-3.66 GeV for J^P=3/2⁺ excited state.

- SELEX observed statistically compelling high mass states near 3.6 GeV/c²
- Evidence of Ξ_{cc}^+ in $\Lambda_c^+ K^- \pi^+$ and $pD^+ K^-$
- Mass of Ξ_{cc}^{+} : 3518.9± 0.9 MeV/c²
- τ(measured) < τ(theory)

Doubly charmed Baryon $(\Xi_{cc}^{+})^{j^{*}}$

Doubly charmed states combine two extreme regimes inside them:

- i) Slow relative motion of two heavy quark, as in charmonium
- ii) Fast motion of light quark.

Doubly charmed baryons provide a new window for understanding the structure of all baryons

- Lightest doubly-charmed baryons can exist with either quark content ccu, Ξ_{cc}^{++} or ccd, Ξ_{cc}^{+} .
- Models generally predict mass range of 3.52-3.66 for J^P=1/2⁺ ground state and 3.636-3.66 GeV for J^P=3/2⁺ excited state.

- SELEX observed statistically compelling high mass states near 3.6 GeV/c²
- Evidence of Ξ_{cc}^+ in $\Lambda_c^+ K^- \pi^+$ and $pD^+ K^-$
- Mass of Ξ_{cc}^{+} : 3518.9± 0.9 MeV/c²
- τ(measured) < τ(theory)

Doubly charmed Baryon $(\Xi_{cc}^{+})^{r}$

Doubly charmed states combine two extreme regimes inside them:

- i) Slow relative motion of two heavy quark, as in charmonium
- ii) Fast motion of light quark.

Doubly charmed baryons provide a new window for understanding the structure of all baryons

- Lightest doubly-charmed baryons can exist with either quark content ccu, Ξ_{cc}^{++} or ccd, Ξ_{cc}^{+} .
- Models generally predict mass range of 3.52-3.66 for J^P=1/2⁺ ground state and 3.636-3.66 GeV for J^P=3/2⁺ excited state.

- SELEX observed statistically compelling high mass states near 3.6 GeV/c²
- Evidence of Ξ_{cc}^+ in $\Lambda_c^+ K^- \pi^+$ and $pD^+ K^-$
- Mass of Ξ_{cc}^{+} : 3518.9± 0.9 MeV/c²
- τ(measured) < τ(theory)

 $\cos(\theta_{\nu}^{*}) > -.6$

 $\cos(\theta_{\rm K}^{*}) > -.6$

 $\Lambda_{c}^{+} \mathrm{K}^{-} \pi^{+} \pi^{+}$

 $\rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

RIGHT-SIGN

WRONG-SIGN

3.46 GeV

Ξ...++

Production cross-section for $e^+e^- \rightarrow \Xi_{cc} X$

at *B* factories : 3 fb to 230 fb

PLB 332, 411(1994); Phys. Atom. Nucl, 65, 1537 (2002 PLB 568 568 (2003)

We should perform confirmation₂₀ at *B* factories !

Searches in other experiments

- SELEX results have not been confirmed by FOCUS, Belle and BaBar.
- Belle doubled the data statistics with improved reconstruction.
- > We revisit this topic with an effort to have additional final states.

Search for $\Xi_{cc}^{+(+)}$

 $980 fb^{-1}$ data is used in this search.

Previous study uses $pK^{-}\pi^{+}$ to reconstruct Λ_{c}^{+} and only $\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}$.

To reduce background $X_p > 0.5$ is required , where $X_p = p_{cm}/p_{max}$; $p_{max} = sqrt(E_{cm}^2 - M_{\Xi cc}^2)$

 $\Xi_c^0 \pi^+$ is a strong decay mode of $\Xi_c^+(2645)$ (J^P=3/2⁺) as well as weak decay of Ξ_{cc}^+

 $\Xi_c^+(2645) \rightarrow \Xi_c^0 \pi^+$ is used as calibration sample for Ξ_{cc}

preliminary

Landmark state, Ξ_c^+ (2645)

Signal PDF: Gaussian convoluted BW ($\sigma = 1.05$ MeV from MC)

- All sub modes give consistent Mass and width of Ξ_c^+ (2645).
- Systematics come from : BG shape, fitting region, ensemble study and difference of data and MC resolution .

First precise measurement of the width of $\Xi_c^+(2645)$ Accuracy of the mass is also significantly improved.

95%C.L. upper limit of $\sigma(e^+e^- \rightarrow \Xi_{cc}X) \times \mathcal{B}(\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+) \times \mathcal{B}(\Xi_c^0 \rightarrow \Xi^- \pi^+) < 0.76-0.26$ fb 95%C.L. upper limit of $\sigma(e^+e^- \rightarrow \Xi_{cc}X) \times \mathcal{B}(\Xi_{cc}^{++} \rightarrow \Xi_c^0 \pi^+ \pi^+) \times \mathcal{B}(\Xi_c^0 \rightarrow \Xi^- \pi^+) < 0.094-0.36$ fb

No significant signal is seen

Ξ_c^+ (3055) and Ξ_c^+ (3123); seen or unseen ?

preliminary

		Belle results (MeV/c ²)		World Averages	s (MeV/c²)
	Yield	Mass	Width	Mass	Width
Ξ _c (2980) ⁺	244±39	2974.9±1.5±0.4	14.8±2.5±1.0	2971.4±3.3	26±7
Ξ _c (3055)+	199±46	3058.1±1.0±0.5	9.7±3.4±1.0	3054.2±1.2±0.5	17±6±11
Ξ _c (3080)+	185±31	3077.9±0.4±0.1	3.2±1.3±0.3	3077.0±0.4	5.8±1.0

Belle confirmed Ξ_c (3055)⁺ but could not see Ξ_c (3123)⁺

 $\sigma \times \mathcal{B}(\Lambda_c^+ \rightarrow pK^-\pi^+)$ of $\Xi_c^+(3123) < 0.17$ fb@ 95% C.L. [1.6±0.6±0.2 fb by BaBar]

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs

Significant signal (3.8 σ) is seen in $\chi_{c1}\gamma$ at 3823 MeV

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs

e⁺e⁻ →γ_{ISR} J/Ψη

Significant signal (3.8 σ) is seen in $\chi_{c1}\gamma$ at 3823 MeV

- Most probably Ψ_2 : the missing piece of $c\overline{c}$ spectrum.
- Consistent mass and decay mode with theory prediction.

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of ${\pmb \Gamma}_{{\pmb w}} {\pmb {\cal B}}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs

e⁺e⁻ →γ_{ISR} J/Ψη

Significant signal (3.8 σ) is seen in $\chi_{c1}\gamma$ at 3823 MeV

- Most probably Ψ_2 : the missing piece of $c\overline{c}$ spectrum.
- Consistent mass and decay mode with theory prediction.

Study of Ξ_c^+ (2645)

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_w \mathcal{B}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs

Significant signal (3.8 σ) is seen in $\chi_{c1}\gamma$ at 3823 MeV

- Most probably Ψ_2 : the missing piece of $c\overline{c}$ spectrum.
- Consistent mass and decay mode with theory prediction.

Precise measurement of the mass and width

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_w \mathcal{B}$

First time $\Psi(4040)$ and $\Psi(4160)$ have been observed to decay to final states not involving charm meson pairs $e^+e^- \rightarrow \gamma_{ISR} J/\Psi\eta$ Significant signal (3.8 σ) is seen in $\chi_{c1}\gamma$ at 3823 MeV \bullet Most probably Ψ_2 : the missing piece of $c\overline{c}$ spectrum. Consistent mass and decay mode with theory prediction. Precise measurement of the mass and width \bullet Study of $\Xi_c^+(2645)$ Search for $\Xi_{cc}^{+(+)}$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{vv} \mathcal{B}$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

First observation of $\gamma \gamma \rightarrow \eta' \pi^+ \pi^-$

Measure mass, width of η_c and first measurement of $\Gamma_{yy} \mathcal{B}$

Belle is still actively solving questions about heavy flavor hadrons

Thank you

Production of $c\bar{c}$ (-like) @ B-factories

605 fb^{-1} $M_{\eta'\pi+\pi-}$ in low mass region

We also search for light hadrons : $\eta(1760)$ and X(1835).

Both are not well known and two photon process can help in identifying their nature.

Assumption that both $\eta(1760)$ and X(1835) has J^{PC} of 0⁻⁺

No interference between resonant and non-resonant is taken into account.

It has also been suggested that data can also be well described by using broad $J^{PC}=0^{-+}$ peaking in mass 2250-2300 and X(1835), without $\eta(1760)$ D.V.Bugg, Phys. Rev. D86 114006(2012)

Parameter	One resonance	Two interferi	ng resonances	Reference
		Solution I	Solution II	•
		X(1835)		
$M, { m MeV}/c^2$		1836.5	(fixed)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$ [6]
$\Gamma, \mathrm{MeV}/c^2$		190 (fixed)	$190 \pm 9^{+38}_{-36}$ [6]
Y		$332^{+140}_{-122} \pm 73$	$632^{+224}_{-231} \pm 139$	
Y_{90}		< 650	< 1490	
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}/c^2$		$18.2^{+7.7}_{-6.7} \pm 4.0$	$35^{+12}_{-13} \pm 8$	
$(\Gamma_{\gamma\gamma}\mathcal{B})_{90} \text{ eV}/c^2$		< 35.6	< 83	
S, σ		2	.8	
		$\eta(1760)$		
$M, { m MeV}/c^2$	$1768^{+24}_{-25} \pm 10$	1703^{+1}_{-1}	$^{2}_{1} \pm 1.8$	$1756 \pm 9 \ [1]$
$\Gamma, \mathrm{MeV}/c^2$	$224^{+62}_{-56} \pm 25$	42^{+36}_{-22}	$\frac{1}{2} \pm 15$	96 ± 70 [1]
Y	$465^{+131}_{-124} \pm 60$	$52^{+35}_{-20} \pm 15$	$315^{+223}_{-165} \pm 88$	
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}/c^2$	$28.2^{+7.9}_{-7.5} \pm 3.7$	$3.0^{+2.0}_{-1.2}\pm0.8$	$18^{+13}_{-10} \pm 5$	
S, σ	4.7	4	.1	
ϕ		$(287^{+42}_{-51})^{\circ}$	$(139^{+19}_{-9})^{\circ}$	
				4.2

Interference with Non-resonant Belle, PRD 86,052002 (2012)

component

Non-resonant into two component :

a) Interfere with resonant (NR1)

b) Don't interfere with resonant part (NR2)

Two solutions for interference

Mass = 2982.7 MeV/c² for α_{NR} = 0.01%

= 2983.0 MeV/c² for α_{NR} = 100%

 $\Gamma = 36.4 \text{ MeV/c}^2$

If for $\alpha_{NR} = 100\%$,

with destructive interference , Yield = 854±59 events with ϕ_1 = (-92±15)° with constructive interference, Yield = 264±22 events with ϕ_2 = (91±8)°

with no interference.	With	no	interf	ference	:
-----------------------	------	----	--------	---------	---

Mass	$= 2982.7 \pm 1.8 \pm 2.2 \text{ MeV/c}^2$
------	--

$$\Gamma = 37.8^{+5.8}_{-5.3} \pm 2.8 \text{ MeV/c}^2$$

Yield = 486±40 events

Experiment	Mass, MeV/c ²	Г, MeV/c²
Belle PLB 706,139(2011)	$2985.4 \pm 1.5 ^{+0.5}_{-2.0}$	$35.1 \pm 3.1^{+1.0}_{-1.6}$
BES PRL 108,222002(2012)	2984.3±0.6±0.6	32.0±1.2±1.0

 $\alpha_{_{\rm NR}} = n1/(n1+n2)$

Charmonium

Bound state of c and τ Spin : $\frac{1}{2}$ and $\frac{1}{2} = 0,1$ Orbital angular momentum: L =0,1,2,... Parity (P) = (-1)^{L+1} Charge Conjugation (C) = (-1)^{L+S} Total Spin : $\vec{J} = \vec{L} + \vec{S}$

Quark model quantum numbers

Exotic quantum numbers 0⁺⁻, 0⁻⁻, 1⁻⁺, 2⁺⁻ and so on..

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$
(Cornell potential)

Spectrum based on this, with spin-orbital, spin-spin and tensor term.

States not easily accommodated, candidates for exotic nature.

TABLE I: Thresholds for decay into open charm.

Channel	Threshold Energy (MeV)
$D^0 ar{D}^0$	3729.4
D^+D^-	3738.8
$D^0 \bar{D}^{*0}$ or $D^{*0} \bar{D}^0$	3871.5
$D^{\pm}D^{*\mp}$	3879.5
$D_s^+ D_s^-$	3936.2
$D^{*0}\bar{D}^{*0}$	4013.6
$D^{*+}D^{*-}$	4020.2
$D_{s}^{+}\bar{D}_{s}^{*-}$ or $D_{s}^{*+}\bar{D}_{s}^{-}$	4080.0
$D_{s}^{*+}D_{s}^{*-}$	4223.8

TABLE V: Calculated and observed rates for E1 radiative transitions among charmonium levels. *Values in italics* result if the influence of open-charm channels is not included.

Transition	Partial width (keV)	
$(\gamma \text{ energy in MeV})$	Computed	Measured
$1^{3}D_{1}(3770) \rightarrow \chi_{c2} \gamma(208)$	3.2	$2 \rightarrow 3.9$
$1^{3}D_{1}(3770) \rightarrow \chi_{c1} \gamma(251)$	18.	$3 \rightarrow 59$
$1^{3}D_{1}(3770) \to \chi_{c0} \gamma(338)$	254	$\rightarrow 225$
$1^{3}D_{1}(3815) \rightarrow \chi_{c2} \gamma(250)$	5.5	$0 \rightarrow 6.8$
$1^{3}D_{1}(3815) \rightarrow \chi_{c1} \gamma(293)$	128	$r \rightarrow 120$
$1^{3}D_{1}(3815) \rightarrow \chi_{c0} \gamma(379)$	344	$\rightarrow 371$
$1^{3}D_{2}(3815) \rightarrow \chi_{c2}\gamma(251)$	50	$\theta \rightarrow 40$
$1^{3}D_{2}(3815) \rightarrow \chi_{c1} \gamma(293)$	230	$0 \rightarrow 191$
$1^{3}D_{2}(3831) \rightarrow \chi_{c2} \gamma(266)$	59	$\rightarrow 45$
$1^{3}D_{2}(3831) \rightarrow \chi_{c1} \gamma(308)$	264	$\rightarrow 212$
$1^{3}D_{2}(3872) \rightarrow \chi_{c2}\gamma(303)$	85	$\rightarrow 45$
$1^{3}D_{2}(3872) \rightarrow \chi_{c1}\gamma(344)$	362	$2 \rightarrow 207$
$1^{3}D_{3}(3815) \rightarrow \chi_{c2} \gamma(251)$	199	$0 \rightarrow 179$
$1^{3}D_{3}(3868) \rightarrow \chi_{c2} \gamma(303)$	329	$\rightarrow 286$
$1^{3}D_{3}(3872) \rightarrow \chi_{c2} \gamma(304)$	341	$\rightarrow 299$

TABLE III: Charmonium spectrum, including the influence of open-charm channels. All masses are in MeV. The penultimate column holds an estimate of the spin splitting due to tensor and spin-orbit forces in a single-channel potential model. The last column gives the spin splitting induced by communication with open-charm states, for an initially unsplit multiplet.

State	Mass	Centroid	Splitting (Potential)	Splitting (Induced)
1^1S_0	2979.9^{a}	a oct ch	-90.5	+2.8
1^3S_1	3096.9^{a}	3 067.6	+30.2	-0.9
$1^3\mathrm{Po}$	3415.3^{a}		-114.9^{e}	+5.9
$1^{3}P_{1}$	3510.5^{a}	a For ac	-11.6^{e}	-2.0
$1^1 P_1$	3 5 2 5 . 3	3 525.3	$+1.5^{e}$	+0.5
$1^3 P_2$	3556.2^{a}		-31.9^{e}	-0.3
2^1S_0	3 637.7ª	0.0 7 0.0b	-50.4	+15.7
2^3S_1	3686.0^{a}	3073.9	+16.8	-5.2
$1^{3}D_{1}$	3 769.9 ^{ab}		-40	-39.9
1^3D_2	3830.6	(2015)d	0	-2.7
1^1D_2	3838.0	(3815)	0	+4.2
1^3D_3	3868.3		+20	+19.0
$2^{3}P_{0}$	3931.9		-90	+10
$2^{3}P_{1}$	4007.5	ancod	-8	+28.4
$2^1 P_1$	3968.0	3 909	0	-11.9
$2^3 P_2$	3966.5		+25	-33.1

S. Godfrey & N. Isgur, PRD 32, 189 (1985) E. Eichten et al., PRL 89,162002 (2002), 46 PRD 69, 094019 (2004) *fb*⁻¹

arXiv:1304.3975

Decay	Yield (Y)	$S(\sigma)$	$\epsilon(\%)$	Branching fraction
$B^{\pm} \rightarrow$	$\psi'(\rightarrow \chi_{cJ}\gamma).$	$B(10^{-4})$		
χ_{c1}	193.2 ± 19.2	14.8	8.6	$7.7\pm0.8\pm0.9$
χ_{c2}	59.1 ± 8.4	7.8	6.0	$6.3\pm0.9\pm0.6$
$B^0 \rightarrow$	$\psi'(ightarrow \chi_{c\mathrm{J}}\gamma) h$	K^0		
χ_{c1}	50.3 ± 7.3	7.2	5.1	$6.8\pm1.0\pm0.7$
χ_{c2}	12.9 ± 4.4	2.9	3.5	$4.7 \pm 1.6 \pm 0.8$
$B^{\pm} \rightarrow$	$X(3823)(\rightarrow$	$B(10^{-6})$		
χ_{c1}	33.2 ± 9.7	3.8	10.9	$9.7\pm2.8\pm1.1$
χ_{c2}	0.3 ± 3.9	0.1	8.8	< 3.6
$B^0 \rightarrow $	$X(3823)(\rightarrow$	$\chi_{cJ}\gamma)K$	-0	
χ_{c1}	3.9 ± 3.4	1.2	6.0	< 9.9
χ_{c2}	5.3 ± 2.9	2.4	5.0	< 22.8
$B^{\pm} \rightarrow$	$X(3872)(\rightarrow$	$\chi_{cJ}\gamma) I$	ζ±	
χ_{c1}	-0.9 ± 5.1		11.1	< 1.9
χ_{c2}	4.7 ± 4.4	1.3	9.3	< 6.7
$B^0 \rightarrow .$	$X(3872)(\rightarrow)$	$(\chi_{cJ}\gamma)K$	0	
χ_{c1}	4.6 ± 3.0	1.6	6.2	< 9.6
χ_{c2}	2.3 ± 2.2	1.1	5.2	< 12.2

Table summarized the results

E705 Collaboration

Belle Mass 3.823 GeV/c²

Looking at ψ' , here 3.836 peaks looks prominent ???

A search has been made in 300 GeV/ $c \pi^{\pm}$ - and proton-Li interactions for production of states that decay into J/ψ or ψ' plus one or two pions. A 2.5 σ enhancement in the $J/\psi \pi^0$ spectrum, possibly the recently reported 1P_1 state of charmonium, is observed at a mass of 3.527 GeV/ c^2 . In the J/ψ plus two pion mass spectrum, we report, together with the expected $\psi' \rightarrow J/\psi \pi^+\pi^-$, the tentative observation of a structure at a mass of 3.836 GeV/ c^2 . No enhancements are seen in the $J/\psi \pi^{\pm}\pi^{\pm}$, $J/\psi \pi^{\pm}\pi^0$, $J/\psi \pi^{\pm}$, or $\psi' \pi^{\pm}$ mass spectra.

PhysRevD.50.4258

FIG. 6. $J/\psi \pi^+\pi^-$ mass spectra from 300 GeV/ $c\pi^\pm$ Li interactions; (b) $J/\psi \pi^+\pi^-$ mass spectrum from 300 GeV/c proton Li interactions.

Interestingly Ψ_2 is not seen in J/ $\Psi\pi\pi$ in other experiments.

PDG2012

$\eta_{\rm c}$ (1S) WIDT	н			References	History since 1990			
VALUE (MeV)	CL%	EVTS		DOCUMENT ID		TECN	COMMENT	
29.7±1.0 29.7±2.1	OUR FIT	RAGE		Error inclu	des sca	ale factor of 2	.0. See the ideogram.	
36.2±2.8±3.0		11k		DEL-AMO-SAN	11M	BABR	$\gamma \gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	
35.1±3.1 ^{+1.0}		920	1	VINOKUROVA	11	BELL	$B^{\pm} \to K^{\pm}(K^0_{\rm S} \ K^{\pm} \ \pi^{\mp})$	
31.7±1.2±0.8		14k	2	LEES	10	BABR	10.6 e ⁺ e ⁻ \rightarrow e ⁺ e ⁻ $K^0_S K^{\pm} \pi^{\mp}$	
36.3 ^{+3.7} ±4.4		921±32		AUBERT	08AB	BABR	$B \to \eta_{\rm C}(1{\rm S}) \: K^{(*)} \to K \overline{K} \pi \: K^{(*)}$	
28.1±3.2±2.2		7.5k		UEHARA	08	BELL	$\gamma \gamma \rightarrow \eta_c \rightarrow hadrons$	
$48^{+8}_{-7} \pm 5$		195		WU	06	BELL	$B^{*} \rightarrow \rho \ \overline{\rho} \ K^{*}$	
40±19±5		20		WU	06	BELL	$B^+ \rightarrow \Lambda \overline{\Lambda} K^+$	
$24.8 \pm 3.4 \pm 3.5$		592		ASNER	04	CLEO	$\gamma \gamma \to \eta_{\rm c}^{\prime} \to K^0_{\rm S} K^{\pm} \pi^{\mp}$	
$20.4^{+7.7}_{-6.7} \pm 2.0$		190		AMBROGIANI	03	E835	$\overline{\rho} \ \rho \to \eta_c \to \gamma \gamma$	
17.0±3.7±7.4			3	BAI	03	BES	$J/\psi \rightarrow \gamma \eta_c$	
11.0±8.1±4.1			4	BAI	00F	BES	$J/\psi \rightarrow \gamma \eta_c$ and $\psi(2S) \rightarrow \gamma \eta_c$	
23.9 ⁺ 12.6 -7.1				ARMSTRONG	95F	E760	$\overline{\rho} \ \rho \to \gamma \ \gamma$	
7.0+7.5		12		BAGLIN	87B	SPEC	$\overline{p} \ p \to \gamma \ \gamma$	
10.1+33.0		23	5	BALTRUSAITI	86	MRK3	$J/\psi \rightarrow \gamma p \overline{p}$	
11.5±4.5				GAISER	86	CBAL	$J/\psi \rightarrow \gamma X, \psi(2S) \rightarrow \gamma X$	

U.L. on
$$\sigma(e^+e^- \rightarrow \Xi_{cc}^{+(+)}X)$$

Assuming BR($\Xi_{cc}^{+(+)} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}(\pi^{+}))$, BR($\Xi_{cc}^{+(+)} \rightarrow \Xi_{c}^{0} \pi^{+}(\pi^{+}))$ and BR($\Xi_{cc}^{0} \rightarrow \Xi^{-} \pi^{+}$) to be 5% *

 $\sigma(e^+e^- \rightarrow \Xi_{cc}^{-+}X) < 92.0-410.0 \text{ fb}$ $\sigma(e^+e^- \rightarrow \Xi_{cc}^{-+}X) < 50.0-520.0 \text{ fb}$ $for \ \Xi_{cc}^{-+}(+) \rightarrow \Lambda_c^{-+}K^-\pi^+(\pi^+)$ $\sigma(e^+e^- \rightarrow \Xi_{cc}^{-+}X) < 30.4-104.0 \text{ fb}$ $for \ \Xi_{cc}^{-+}(+) \rightarrow \Xi_c^{-0}\pi^+(\pi^+)$ $\sigma(e^+e^- \rightarrow \Xi_{cc}^{-+}X) < 37.6-144.0 \text{ fb}$

Theory predicts production cross-section for $e^+e^- \rightarrow \Xi_{cc} X$ at *B* factories :3-230 fb PLB 332, 411(1994); Phys. Atom. Nucl, 65, 1537 (2002) PLB 568 568 (2003)

Result is comparable with some of the theoretical model.

* Similar to $B(\Lambda_c^+ \rightarrow pK^-\pi^+) \operatorname{decay}^{52}$

Signal MC

 Ξ_{cc} momentum is expected to be lower than Λ_c^+ momentum because 4 charm, anti-charm quarks are produced and kinetic energy available is small.

Use measured momentum of Ac+

 $X_p = p_{cm}/p_{max}$ $p_{max} = sqrt(E_{cm}^2 - M_{\Lambda c}^2)$ P_{max} is ~4.7 GeV/c

Assume the same d σ /dXp and change M_{Ac} \rightarrow M_{Ecc} P_{max}~3.9 GeV/c (M_{Ecc}=3.52 GeV/c²)

8

Taken from Y. Kato (Belle), JPS talk March 2013

• $e^+e^- \rightarrow J/\psi + cc^{bar}$ by Belle

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/

General purpose detector, build to test Standard Model mechanism for CP violation in B decays to charmonium $(B^0 \rightarrow J/\Psi, \Psi', \chi_{c1} K^0)$. arXiv:1201.4643v1 Contribution to charmonium (-like) states: $\eta_c(2S), X(3872), Y(3940), Z(3930), X(3940), X(3915), Y(4260),$ $Y(4660), Z(4430)^+, Z_1(4050)^+, Z_2(4250)^+ \dots$ ⁵⁶