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from the high energy to the low energy regimes.

@ In the Nonrelativistic QCD (NRQCD) approach, the
production of heavy quarkonium is factored to short distance
coefficients and long distance matrix elements(LDMEs).

o
R = ) F,<O(n)>

F, = Fg(l + cros + 02043 +...)
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@ The short distance coefficients can be calculated
perturbatively with the expansions by .

© The LDMES can be scaled by the relative velocity v between
the quark and antiquark. v? is about 0.2 ~ 0.3 for
charmonium and about 0.08 ~ 0.1 for bottomonium.
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@ The cross section of ete™ — J/ice at /s = 10.6GeV was
measured by Belle:

olete” = J/p+ce+X] = (0.74£0.081003) pb,(2)

@ It is much larger than the LO prediction 0.1 ~ 0.15pb.

Q o(ete — J/¢ + X) was also measured by Belle, then Belle
got:
olete™ = J/¢p+ cc + X)

R,z = =0.634+0.091019 (3
- olete = J/p+ X) “o09: (3)

© Which is larger than the theoretical prediction 0.1.



ete——J/w cc and non-cc cross sections
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Figure: Belle’s result of inclusive J/¢) production.
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Exclusive .J/v production at B factories

@ The cross section of ee™ — J/1 + 1. was measured by Belle
and Babar:

olJ/+nd x Be[>2] = 17.6~256fb  (4)

B"e[> 2] is the branch ratio of 7. decay to more than 2
charged track.

@ It is much larger than the LO prediction 3.8 ~ 5.5fb .
© Similar discrepancy is appeared in o(eTe™ — J/¥ + Xc0)



3
Mo GoVED)

124 fb~ 1, preliminary, hep-ex in preparation.

* Double cc production

Jp ce e Xco 1c(25)
Expt | o X Bss “ 176 £ 28 +21 103+25+18 164+ 3.7+ 3.0
o X Bsay 256 +28+34 64+17+10 16.5 £ 3.0 + 2.4
Th. Braaten Lee PRD 67 054007(2003)  2.31 + 1.09 2.28 + 1.03 0.96 + 0.45
Liu, He, Chao hep-ph/0408141 5.5 6.9 3.7
Applicability of NRQCD : Bondar, Chernyak, hep-ph/0412335
Denis Bernard ~ QeD 05 ALZHKF  june 2005 19

Figure: BaBar’s result of double charmonium production.
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So we calculated the NLO QCD corrections of:

o
2]

o
o
o

ete”™ = J/U + 1.
efe” = J/Y + Xeo
ete™ = J/y +ce
ete™ — J/Y +gg
ete” = J/w+g



The frame of Calculation



Half of One-Loop box Feynman diagrams for double charm
process
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The frame of Calculation of inclusive process

Using the NRQCD factorization formalism, we can write down the
scattering amplitude of eTe™ — v* — J/v + c¢ as:

A(y* = ce(®** 1Ly, ) (2p1) + c(p2) + &(p3))

=0 3 XX

L’LZJZSIPZ 8152 ]k
X (813 52[ Sy Sy ) (L Lz Sy S| JyJyz) (355 3k|1)
X A" = ¢j(p1) + &(p1) + aip2) + &(ps3)) (5)

There are only three independent momentum py, pa, p3, but the
loop integrate will be
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The frame of Calculation of exclusive process

The scattering amplitude of eTe™ — v* — J/1¢ + 1, as:
A(y* = ce(**¥*1 Ly, )(2p1) + e Ly, ) (2p2))
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X (535 54| Sy, Snez) (Lne Lz SneSnez| Ine Inez) (31; 34| 1)
XA = Qj(p1) + Qr(p1) + Qu(p2) + Qi(p2)) (7)

There are only two independent momentum p1, p2, but the loop
integrate will be
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The frame of Calculation of exclusive process

The scattering amplitude of eTe™ — v* — J/¥ + x0 as:
A(Y* = e Ly, ) (2p1) + ce(Pxot Ly )(2p2))

= Ol 2. 2. D 2.

Loy Sz Lxg2Sxc0z 515255384 jk,il
X (815 52| Sy Syz) (Lo Lpz; SupSupz| Ty Jyz) (345 k| 1)
X <S37 S4 ’SXCO SXCOZ> <LXCO LXCOZ; SXCO SXCOZ|JXCO JXcOZ> <3l’ 37" 1>

gt a(ZaA(V* — Q;(p1)Qk(p1) + Qulp2 + Q) Qi(p2 — q))

q—0

There are only two independent momentum pq, p2, but the loop
integrate will be

’ 1
dPg—_ 9
/ T NZNN; N3N, )



Key points of the calculation

Only two or three independent momentum py1, p2, (p3), but there
are five points loop integrate

1
o o P —
/ qN0N1N2N3N4

1
Pg— 10
/ ¢ INZN N, N3N, (10)

For the No. of independent momentum is less than 4, the Gram
Determinant = 0.

The five point reduction, the Passarino-Veltman reduction do not
work here.

The other part can be calculated in the same way of QCD.
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Five point integrate of inclusive process
The steps of calculation:

@ Separate IR divergence. (arXiv:hep-ph/0308246 Nucl.Phys.
B675 (2003) 447-466 )

@ Introduce the mass of gluon and solve the equation

4
ZaiNi =0 (11)
1=0

where C' # 0 is independent on integrate momentum ¢ and a;
is consistent.

o

/ — Z & (12)
N0N1N2N3N4 C | NogNiNoN3Ny

They become four point integrate and can be calculated
directly.



Five point integrate of inclusive process
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Five point integrate of inclusive process

© If we do not introduce the mass of gluon, C' = 0 when the
gluon connect with the both legs of J/1. Solve the equation

4
Z aiNi = NO

Z%NO = 1 (13)

=1

where q; is consistent.

2]

N,dP
/ —Z / q (14)
N0N1N2N3N4 - N N1N2N3N4

They become four point integrate but Nj.
© It is calculated in the same way with the exclusive process.



Five point integrate of exclusive process of double S wave

We need calculate the five-point function
EO[plv 2pla —P2, _2p2a m, 05 m, Oa m] ’

Pentagon N10



Eofln [plv 2pla —Pp2, _2p2a m, Oa m, 07 m]
2 2
=FEp — ;DO[_pla —p1 — p2,p1,0,m,0,m] — gDO[pl < pa)

_/ dPq/(2m)P (3/2 —2(¢> —m?) —4q-p1 +4q-p2 — 8m2) 2/s
(@ = m?) (g +p1)?((a+ 2p1)? = m?) (g — p2)?((q — 2p2)? — m?)
dPyq
(2m)P

2/s(s/2 — 4q - p1 + 4q - po — 8m?)
(¢ —m?)(q+p1)*((q + 2p1)? — m?)(q — p2)*((q — 2p2)* — m?)

dD 1
= First Term—i—/m)qD/o

I2_ daid (30— x5 — 1)4I(1 — 16m?/s)(1 - X —Y)
[(g+Xp1 — Ypo)2 —m2(1 — X — V)2 + XYs/4]°

= ?DO[pl + p2,p1 + 2p2a _plaoaoama m] +/

2




Q where X = 1 + 225,Y = 23 + 224. The First Term is IR-
and Coulomb-finite. It can be calculated in D = 4 space-time
dimension and v =0 , it is
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—TT m285/2

(15)



Q where X = 1 + 225,Y = 23 + 224. The First Term is IR-
and Coulomb-finite. It can be calculated in D = 4 space-time
dimension and v =0 , it is

2v4m? — s tan™ \/m — /s In=3
—im2m?2s5/2 (15)

@ The second term is IR- and Coulomb-finite too. Choose
{xly Z2,X3,T4, 1E5} = {].—CL, ab(].—C), a(]'_b)7 CLde, CLbC(].—d)}
and integrate a, b, d, c step by step in Mathematica,



Q where X = 1 + 225,Y = 23 + 224. The First Term is IR-
and Coulomb-finite. It can be calculated in D = 4 space-time
dimension and v =0 , it is

2v4m? — s tan™ \/m — /s In=3
—im2m?2s5/2 (15)

@ The second term is IR- and Coulomb-finite too. Choose
{xly Z2,X3,T4, 1E5} = {].—CL, ab(].—C), a(]'_b)7 CLde, CLbC(].—d)}
and integrate a, b, d, c step by step in Mathematica,

o

2(4m?—s)*/*tan \}4#%-\/5 (im(3m*—s)+(s—4m?)In=%)

8imAn2(4m?2 — 5)s5/2(16m?2 — s)~1

(16)
and In(—s/m?) = In(—(s + i0)/m?) = In(s/m?) — ir.



Q@ Do[—p1,—p1 — p2,p1,0,m,0,m] term in Eq. (15) is,

DO[_pla —P1 _p27p170am707m] -

4
ECO[_p17p17O)m7m] + (477')2 m28

7 2im — 2In4

(17)



Q@ Do[—p1,—p1 — p2,p1,0,m,0,m] term in Eq. (15) is,

DO[_pla —P1 _p27p170am707m] -
1 2w — 2In4
(4m)2  m2s

4
ECO[_p17p17O)m7m] + (17)

@ This term will appear in Box N5, N8.

CO[plm _p15707 m7m]
—7 A2\ ©
= rda -+ ——2| (18
2m2(47r)2(m2) ( +€)[e+v ] (18)

where v = |p1 — p1z|/m , defined in meson c.m. frame.




Five point integrate of exclusive process of S +P wave

Pentagon N10

dD
| e (19)
N2N;N;Ns Ny

p in this diagram is more complex, but it can be integrated
analysis.
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IBP ruduction in five point integrate of S +P wave

@ Solve the equation

4
N;
Zaiﬁo = 1, (20)
=1
(2
dap - N;dP
/QQZZa’i/?)Zq' (21)
N§N1NaN3 Ny — NgN1NaN3Ny
© For there is only two independent momentum, we can reduce
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IBP ruduction in five point integrate of S +P wave

@ Solve the equation

4
N;
Zaiﬁo = 1, (20)
=1
(2
N;dP
| s Z s ()
Ng N1N2N3N4 P NSN1NaNsNy
© For there is only two independent momentum, we can reduce
N;dPgq .
NN NaN3 NG © again.

qu qu
© Then we can get : ,
get [ N3NZN; ngNng




IBP ruduction in five point integrate of S +P wave

@ Solve the equation

4
N;
Zaiﬁo = 1, (20)
=1
(2
dap - N;dP
/26122%/3@(1. (21)
N§N1NaN3 Ny — NgN1NaN3Ny
© For there is only two independent momentum, we can reduce
N;dPgq .
NN NaN3 NG © again.

dPq dPgq
© Then we can get : ,
get [ NININ,' J NZNZNZ

@ It can be calculated with IBP reduction. (Feng Feng's Talk)
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Numerical Result of ete™ — J/¢ + 1,

Q Select mj/y, = my, =2m, m=1.5 GeV, A% = 338MeV,
then a(2m) = 0.259, and the cross section at NLO is

olet +e — J/i+n.) = 15.7fb, (22)

which is larger than LO cross section 8.0 fb by a factor of
1.96 .
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Numerical Result of ete™ — J/¢ + 1,

Q Select mj/y, = my, =2m, m=1.5 GeV, A% = 338MeV,
then a(2m) = 0.259, and the cross section at NLO is

olet +e” — J/v +n.) = 15.7b, (22)

which is larger than LO cross section 8.0 fb by a factor of
1.96 .

Q If we select m = 1.4GeV, pu = 2m, the NLO cross section is
olet +e” — J/v +n.) = 18.9fb, (23)

which is larger than LO cross section 9.2 fb by a factor
of2.05 .

© It is can be compared with the B factories data 17 ~ 25 fb
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If we select MS scheme for the charm mass, using mog = 1.5GeV,
the corresponding MS mass is i = 1.30GeV defined by

myg(m) = m. And myg(3 GeV) = 1.16 GeV. With the

= 2mopg, we get the cross section at NLO of

olet +e= — J/Y +n.) =21.4 b, (24)

which is a factor of 2.1 larger than the LO cross section 10.3 fb.
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Cross sections as functions of the renormalization scale u. Here
mos = 1.5GeV, and the corresponding MS mass is

m = 1.30GeV; the solid line is for MS mass scheme and the
dashed line is for on-shell mass scheme.
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functions of the renormalization scale p. NLO results are
represented by solid lines and LO one by dashed lines; the upper
line is for on-shell mass scheme and the corresponding lower line is
for MS mass scheme.



Numerical Result of ete™ — J/u + cé

Using the experimental value

[(J/y — ete™) = 5.55+0.14 4+ 0.02 KeV[*], we obtain

| Rs(0)[2 = 1.01GeV>. Taking AL = 338MeV,

m .y = My, = 2m (in the nonrelativistic limit). If we set

m = 1.4GeV and p = 2m, the cross section at next-to-leading

order of « is
o(et + e~ = J/ip+cc+ X) = 0.47 pb. (25)

It is about a factor of 1.7 larger than leading order cross section
0.27 pb.



m =14~ 1.5GeV A = 0.338GeV

o (fb)

|Rs(0)|?> = 1.01GeV? /s = 10.6GeV

Next-to-leading order

600

777777 Leading order

400

200

1.5 2.5 3.5 4.5 5.5 ,u(GeV)

Cross sections as functions of the renormalization scale ..
The upper line is for m = 1.4GeV and the corresponding
lower line is for m = 1.5GeV.
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Cross sections as functions of the charm quark mass m..
The upper line is for ;1 = 2.8GeV and the corresponding lower
line is for y = 5.3GeV.



For the experiment date is the prompt .J/¢ + cc + X cross section.
Combine the feed down contributions, if we set m = 1.5GeV and
i = 2m, then the prompt cross section of ete™ — J/1 + cc + X
at next-to-leading order of ay is

Tprompt(eT + e~ = J/ip + ce+ X) = 0.50 pb. (26)

It is 67% of the experiment date 0.74 pb in Eq. (2).

If we set m = 1.4GeV and p = 2m, ignore the other difference of
other contributions, then the prompt cross section of

ete” — J/1 + cc + X at next-to-leading order of ay is

O_prmnpt(eJr +e — J/L/J +cc+ X) = 0.71 pb. (27)

It is about 96% of the new Belle date 0.74 pb in Eq. (2).



Numerical result of J/1¢gg

Belle | n=28 | u=28 | p=53| pu=>53
Data | GeV LO | GeV NLO | GeV LO | GeV NLO
o(gg) | 0.43 0.57 0.67 0.36 0.53
o(cc) | 0.74 0.38 0.71 0.24 0.53
R.: | 0.63 0.40 0.51 0.40 0.50

Table: Cross sections of prompt (feeddown included) J/1gg and J/icc
production in eTe~

annihilation at B factories in units of pb.




Summary

We calculated the NLO QCD corrections of J/1 production at B
factories, the NLO QCD corrections improved the cross sections
can be compared with the B factories data.
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