The NLO Calculations of heavy quarkonium production at B factories

Yu-Jie Zhang
Beihang University, Beijing 100191, China
Email: nophy0@gmail.com

2013.5.19, ACAT2013@IHEP.Beijing.China

Outline

- Introduction
- The frame of calculation
- Numerical result
- Summary

Collaborated with

- Kuang-Ta Chao
- Ying-Jia Gao
- Yan-Qing Ma
- Kai Wang

Based on PRL96(2006)092001 (hep-ph/0506076), PRL98(2007)092003 (hep-ph/0611086), PRD78(2008)054006 (0802.3655), PRL102(2009)162002 (arXiv:0812.5106), PRD81(2010)034015 (0911.2166)

Some detail can be found in Bin Gong and Feng Feng's talks.

Introduction

NRQCD

(1) Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.

NRQCD

(1) Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.
(2) In the Nonrelativistic QCD (NRQCD) approach, the production of heavy quarkonium is factored to short distance coefficients and long distance matrix elements(LDMEs).
©

$$
\begin{align*}
& R=\sum_{n} F_{n}<\mathcal{O}(n)> \\
& F_{n}=F_{n}^{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots\right) \\
&<\mathcal{O}(n)>v^{d_{n}} \tag{1}
\end{align*}
$$

NRQCD

(1) Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.
(2) In the Nonrelativistic QCD (NRQCD) approach, the production of heavy quarkonium is factored to short distance coefficients and long distance matrix elements(LDMEs).
(3)

$$
\begin{align*}
& R=\sum_{n} F_{n}<\mathcal{O}(n)> \\
& F_{n}=F_{n}^{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots\right) \\
&<\mathcal{O}(n)>v^{d_{n}} \tag{1}
\end{align*}
$$

(9) The short distance coefficients can be calculated perturbatively with the expansions by α_{s}.

NRQCD

(1) Heavy quarkonium is an excellent candidate to probe QCD from the high energy to the low energy regimes.
(2) In the Nonrelativistic QCD (NRQCD) approach, the production of heavy quarkonium is factored to short distance coefficients and long distance matrix elements(LDMEs).
(3)

$$
\begin{align*}
& R=\sum_{n} F_{n}<\mathcal{O}(n)> \\
& F_{n}=F_{n}^{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots .\right) \\
&<\mathcal{O}(n)>v^{d_{n}} \tag{1}
\end{align*}
$$

(9) The short distance coefficients can be calculated perturbatively with the expansions by α_{s}.
(5) The LDMES can be scaled by the relative velocity v between the quark and antiquark. v^{2} is about $0.2 \sim 0.3$ for charmonium and about $0.08 \sim 0.1$ for bottomonium.

Inclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi c \bar{c}$ at $\sqrt{s}=10.6 \mathrm{GeV}$ was measured by Belle:

$$
\sigma\left[e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right]=\left(0.74 \pm 0.08_{-0.08}^{+0.09}\right) \mathrm{pb},(2)
$$

Inclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi c \bar{c}$ at $\sqrt{s}=10.6 \mathrm{GeV}$ was measured by Belle:

$$
\sigma\left[e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right]=\left(0.74 \pm 0.08_{-0.08}^{+0.09}\right) \mathrm{pb},(2)
$$

(2) It is much larger than the LO prediction $0.1 \sim 0.15 \mathrm{pb}$.

Inclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi c \bar{c}$ at $\sqrt{s}=10.6 \mathrm{GeV}$ was measured by Belle:

$$
\sigma\left[e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right]=\left(0.74 \pm 0.08_{-0.08}^{+0.09}\right) \mathrm{pb},(2)
$$

(2) It is much larger than the LO prediction $0.1 \sim 0.15 \mathrm{pb}$.
(3) $\sigma\left(e^{+} e^{-} \rightarrow J / \psi+X\right)$ was also measured by Belle, then Belle got:

$$
\begin{equation*}
R_{c \bar{c}}=\frac{\sigma\left(e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right)}{\sigma\left(e^{+} e^{-} \rightarrow J / \psi+X\right)}=0.63 \pm 0.09_{-0.09}^{+0.10} \tag{3}
\end{equation*}
$$

Inclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi c \bar{c}$ at $\sqrt{s}=10.6 \mathrm{GeV}$ was measured by Belle:

$$
\sigma\left[e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right]=\left(0.74 \pm 0.08_{-0.08}^{+0.09}\right) \mathrm{pb},(2)
$$

(2) It is much larger than the LO prediction $0.1 \sim 0.15 \mathrm{pb}$.
(3) $\sigma\left(e^{+} e^{-} \rightarrow J / \psi+X\right)$ was also measured by Belle, then Belle got:

$$
\begin{equation*}
R_{c \bar{c}}=\frac{\sigma\left(e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X\right)}{\sigma\left(e^{+} e^{-} \rightarrow J / \psi+X\right)}=0.63 \pm 0.09_{-0.09}^{+0.10} \tag{3}
\end{equation*}
$$

(9) Which is larger than the theoretical prediction 0.1.

$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{J} / \boldsymbol{\psi} \mathbf{c c}$ and non-cc cross sections

Model independent full cross sections prelin	
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi\right.$ cc) $), \mathrm{pb}$	$0.74 \pm \mathbf{0 . 0 8}{ }^{+0.09}{ }_{-0.08}$
$\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi\right.$ non-cc), pb	$\mathbf{0 . 4 3} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 9}$

Perturbative QCD (no relativisitc corrections): Kiselev et al. (1995)

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi c \mathrm{c}\right) \sim 0.05 \mathrm{pb}
$$

Perturbative QCD:
Berezhnoy-Likhoded (2003)

$$
\frac{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathrm{J}\right)}{\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \mathrm{gg}\right)} \sim 0.1
$$

Figure: Belle's result of inclusive J / ψ production.

Exclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$ was measured by Belle and Babar:

$$
\begin{equation*}
\sigma\left[J / \psi+\eta_{c}\right] \times B^{\eta_{c}}[>2]=17.6 \sim 25.6 \mathrm{fb} \tag{4}
\end{equation*}
$$

$B^{\eta_{c}}[>2]$ is the branch ratio of η_{c} decay to more than 2 charged track.

Exclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$ was measured by Belle and Babar:

$$
\begin{equation*}
\sigma\left[J / \psi+\eta_{c}\right] \times B^{\eta_{c}}[>2]=17.6 \sim 25.6 \mathrm{fb} \tag{4}
\end{equation*}
$$

$B^{\eta_{c}}[>2]$ is the branch ratio of η_{c} decay to more than 2 charged track.
(2) It is much larger than the LO prediction $3.8 \sim 5.5 \mathrm{fb}$.

Exclusive J / ψ production at B factories

(1) The cross section of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$ was measured by Belle and Babar:

$$
\begin{equation*}
\sigma\left[J / \psi+\eta_{c}\right] \times B^{\eta_{c}}[>2]=17.6 \sim 25.6 \mathrm{fb} \tag{4}
\end{equation*}
$$

$B^{\eta_{c}}[>2]$ is the branch ratio of η_{c} decay to more than 2 charged track.
(2) It is much larger than the LO prediction $3.8 \sim 5.5 \mathrm{fb}$.
(3) Similar discrepancy is appeared in $\sigma\left(e^{+} e^{-} \rightarrow J / \psi+\chi_{c 0}\right)$

1 Double cc production

$124 \mathrm{fb}^{-1}$ ，preliminary，hep－ex in preparation．

	$J / \psi c \bar{c}$	η_{c}	$\chi_{c 0}$	$\eta_{c}(2 S)$
Expt	$\sigma \times \mathcal{B}_{>2}$	$17.6 \pm 2.8 \pm 2.1$	$10.3 \pm 2.5 \pm 1.8$	$16.4 \pm 3.7 \pm 3.0$
	$\sigma \times \mathcal{B}_{>2} \subset \mathcal{B}^{2}$	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
Th．	Braaten Lee PRD 67 054007（2003）	2.31 ± 1.09	2.28 ± 1.03	0.96 ± 0.45
	Liu，He，Chao hep－ph／0408141	5.5	6.9	3.7

Applicability of NRQCD ：Bondar，Chernyak，hep－ph／0412335
Denis Bernard QCD 05 北京大禜 June 2005 19

Figure：BaBar＇s result of double charmonium production．

So we calculated the NLO QCD corrections of:

$$
\text { (1) } e^{+} e^{-} \rightarrow J / \psi+\eta_{c}
$$

So we calculated the NLO QCD corrections of:
(1) $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$
(2) $e^{+} e^{-} \rightarrow J / \psi+\chi_{c 0}$

So we calculated the NLO QCD corrections of:
(1) $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$
(2) $e^{+} e^{-} \rightarrow J / \psi+\chi_{c 0}$
(3) $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}$

So we calculated the NLO QCD corrections of:
(1) $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$
(2) $e^{+} e^{-} \rightarrow J / \psi+\chi_{c 0}$
(3) $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}$
(9) $e^{+} e^{-} \rightarrow J / \psi+g g$

So we calculated the NLO QCD corrections of:
(1) $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$
(2) $e^{+} e^{-} \rightarrow J / \psi+\chi_{c 0}$
(3) $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}$
(3) $e^{+} e^{-} \rightarrow J / \psi+g g$
(3) $e^{+} e^{-} \rightarrow J / \psi+g$

The frame of Calculation

Half of One-Loop box Feynman diagrams for double charm process

The frame of Calculation of inclusive process

Using the NRQCD factorization formalism, we can write down the scattering amplitude of $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow J / \psi+c \bar{c}$ as:

$$
\begin{align*}
\mathcal{A}\left(\gamma^{*} \rightarrow\right. & \left.c \bar{c}\left({ }^{2 S_{\psi}+1} L_{J_{\psi}}\right)\left(2 p_{1}\right)+c\left(p_{2}\right)+\bar{c}\left(p_{3}\right)\right) \\
= & \sqrt{C_{L_{\psi}}} \sum_{L_{\psi z} S_{\psi z}} \sum_{s_{1} s_{2}} \sum_{j k} \\
& \times\left\langle s_{1} ; s_{2} \mid S_{\psi} S_{\psi z}\right\rangle\left\langle L_{\psi} L_{\psi z} ; S_{\psi} S_{\psi z} \mid J_{\psi} J_{\psi z}\right\rangle\langle 3 j ; \overline{3} k \mid 1\rangle \\
& \times \mathcal{A}\left(\gamma^{*} \rightarrow c_{j}\left(p_{1}\right)+\bar{c}_{k}\left(p_{1}\right)+c_{l}\left(p_{2}\right)+\bar{c}_{i}\left(p_{3}\right)\right) \tag{5}
\end{align*}
$$

There are only three independent momentum p_{1}, p_{2}, p_{3}, but the loop integrate will be

$$
\begin{equation*}
\int \mathrm{d}^{D} q \frac{1}{N_{0} N_{1} N_{2} N_{3} N_{4}} \tag{6}
\end{equation*}
$$

The frame of Calculation of exclusive process

The scattering amplitude of $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow J / \psi+\eta_{c}$ as:

$$
\begin{align*}
\mathcal{A}\left(\gamma^{*} \rightarrow\right. & \left.c \bar{c}\left({ }^{2 S_{\psi}+1} L_{J_{\psi}}\right)\left(2 p_{1}\right)+c \bar{c}\left({ }^{2 S_{\eta_{c}}+1} L_{J_{\eta_{c}}}\right)\left(2 p_{2}\right)\right) \\
= & \sqrt{C_{L_{\psi}} C_{L_{\eta_{c}}}} \sum_{L_{\psi z} S_{\psi z}} \sum_{L_{\eta_{c} z} S_{\eta_{c} z}} \sum_{s_{1} s_{2}, s_{3} s_{4}} \sum_{j k, i l} \\
& \times\left\langle s_{1} ; s_{2} \mid S_{\psi} S_{\psi z}\right\rangle\left\langle L_{\psi} L_{\psi z} ; S_{\psi} S_{\psi z} \mid J_{\psi} J_{\psi z}\right\rangle\langle 3 j ; \overline{3} k \mid 1\rangle \\
& \times\left\langle s_{3} ; s_{4} \mid S_{\eta_{c}} S_{\eta_{c} z}\right\rangle\left\langle L_{\eta_{c}} L_{\eta_{c} z} ; S_{\eta_{c}} S_{\eta_{c} z} \mid J_{\eta_{c}} J_{\eta_{c} z}\right\rangle\langle 3 l ; \overline{3} i \mid 1\rangle \\
& \times \mathcal{A}\left(\gamma^{*} \rightarrow Q_{j}\left(p_{1}\right)+\bar{Q}_{k}\left(p_{1}\right)+Q_{l}\left(p_{2}\right)+\bar{Q}_{i}\left(p_{2}\right)\right) \tag{7}
\end{align*}
$$

There are only two independent momentum p_{1}, p_{2}, but the loop integrate will be

$$
\begin{equation*}
\int \mathrm{d}^{D} q \frac{1}{N_{0} N_{1} N_{2} N_{3} N_{4}} \tag{8}
\end{equation*}
$$

The frame of Calculation of exclusive process

The scattering amplitude of $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow J / \psi+\chi_{c 0}$ as:

$$
\begin{aligned}
& \mathcal{A}\left(\gamma^{*} \rightarrow\right.\left.c \bar{c}\left({ }^{2 S_{\psi}+1} L_{J_{\psi}}\right)\left(2 p_{1}\right)+c \bar{c}\left({ }^{2 S_{\chi_{c 0}}+1} L_{J_{\chi_{c 0}}}\right)\left(2 p_{2}\right)\right) \\
&= \sqrt{C_{L_{\psi}} C_{L_{\chi_{c 0}}}} \sum_{L_{\psi z} S_{\psi z}} \sum_{L_{\chi_{c 0}} z} S_{\chi_{c 0} z} \\
& \sum_{s_{1} s_{2}, s_{3} s_{4}} \sum_{j k, i l} \\
& \times\left\langle s_{1} ; s_{2} \mid S_{\psi} S_{\psi z}\right\rangle\left\langle L_{\psi} L_{\psi z} ; S_{\psi} S_{\psi z} \mid J_{\psi} J_{\psi z}\right\rangle\langle 3 j ; \overline{3} k \mid 1\rangle \\
& \times\left\langle s_{3} ; s_{4} \mid S_{\chi_{c 0}} S_{\chi_{c 0} z}\right\rangle\left\langle L_{\chi_{c 0}} L_{\chi_{c 0} z} ; S_{\chi_{c 0}} S_{\chi_{c 0} z} \mid J_{\chi_{c 0}} J_{\chi_{c 0} z}\right\rangle\langle 3 l ; \overline{3} i \mid 1\rangle \\
& \times\left.\varepsilon^{* \alpha} \frac{\partial}{\partial q^{\alpha}} \mathcal{A}\left(\gamma^{*} \rightarrow Q_{j}\left(p_{1}\right) \bar{Q}_{k}\left(p_{1}\right)+Q_{l}\left(p_{2}+q\right) \bar{Q}_{i}\left(p_{2}-q\right)\right)\right|_{q \rightarrow 0}
\end{aligned}
$$

There are only two independent momentum p_{1}, p_{2}, but the loop integrate will be

$$
\begin{equation*}
\int \mathrm{d}^{D} q \frac{1}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}} \tag{9}
\end{equation*}
$$

Key points of the calculation

Only two or three independent momentum $p_{1}, p_{2},\left(p_{3}\right)$, but there are five points loop integrate

$$
\begin{align*}
& \int \mathrm{d}^{D} q \frac{1}{N_{0} N_{1} N_{2} N_{3} N_{4}} \\
& \int \mathrm{~d}^{D} q \frac{1}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}} \tag{10}
\end{align*}
$$

For the No. of independent momentum is less than 4, the Gram Determinant $=0$.
The five point reduction, the Passarino-Veltman reduction do not work here.
The other part can be calculated in the same way of QCD.

Five point integrate of inclusive process

The steps of calculation:
(1) Separate IR divergence. (arXiv:hep-ph/0308246 Nucl.Phys. B675 (2003) 447-466)

Five point integrate of inclusive process

The steps of calculation:
(1) Separate IR divergence. (arXiv:hep-ph/0308246 Nucl.Phys. B675 (2003) 447-466)
(2) Introduce the mass of gluon and solve the equation

$$
\begin{equation*}
\sum_{i=0}^{4} a_{i} N_{i}=C \tag{11}
\end{equation*}
$$

where $C \neq 0$ is independent on integrate momentum q and a_{i} is consistent.

Five point integrate of inclusive process

The steps of calculation:
(1) Separate IR divergence. (arXiv:hep-ph/0308246 Nucl.Phys. B675 (2003) 447-466)
(2) Introduce the mass of gluon and solve the equation

$$
\begin{equation*}
\sum_{i=0}^{4} a_{i} N_{i}=C \tag{11}
\end{equation*}
$$

where $C \neq 0$ is independent on integrate momentum q and a_{i} is consistent.
(3)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=0}^{4} \frac{a_{i}}{C} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0} N_{1} N_{2} N_{3} N_{4}} \tag{12}
\end{equation*}
$$

They become four point integrate and can be calculated directly.

Five point integrate of inclusive process

(1) If we do not introduce the mass of gluon, $C=0$ when the gluon connect with the both legs of J / ψ. Solve the equation

$$
\begin{align*}
\sum_{i=1}^{4} a_{i} N_{i} & =N_{0} \\
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}} & =1 \tag{13}
\end{align*}
$$

where a_{i} is consistent.

Five point integrate of inclusive process

(1) If we do not introduce the mass of gluon, $C=0$ when the gluon connect with the both legs of J / ψ. Solve the equation

$$
\begin{align*}
\sum_{i=1}^{4} a_{i} N_{i} & =N_{0} \\
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}} & =1 \tag{13}
\end{align*}
$$

where a_{i} is consistent.
(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}} \tag{14}
\end{equation*}
$$

They become four point integrate but N_{0}^{2}.

Five point integrate of inclusive process

(1) If we do not introduce the mass of gluon, $C=0$ when the gluon connect with the both legs of J / ψ. Solve the equation

$$
\begin{align*}
\sum_{i=1}^{4} a_{i} N_{i} & =N_{0} \\
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}} & =1 \tag{13}
\end{align*}
$$

where a_{i} is consistent.
(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}} . \tag{14}
\end{equation*}
$$

They become four point integrate but N_{0}^{2}.
(3) It is calculated in the same way with the exclusive process.

Five point integrate of exclusive process of double S wave

We need calculate the five-point function
$E_{0}\left[p_{1}, 2 p_{1},-p_{2},-2 p_{2}, m, 0, m, 0, m\right]$,

$$
\begin{aligned}
& E_{0}^{f i n}\left[p_{1}, 2 p_{1},-p_{2},-2 p_{2}, m, 0, m, 0, m\right] \\
&= E_{0}-\frac{2}{s} D_{0}\left[-p_{1},-p_{1}-p_{2}, p_{1}, 0, m, 0, m\right]-\frac{2}{s} D_{0}\left[p_{1} \leftrightarrow p_{2}\right] \\
&= \int \frac{\mathrm{d}^{D} q /(2 \pi)^{D}\left(s / 2-2\left(q^{2}-m^{2}\right)-4 q \cdot p_{1}+4 q \cdot p_{2}-8 m^{2}\right) 2 / s}{\left(q^{2}-m^{2}\right)\left(q+p_{1}\right)^{2}\left(\left(q+2 p_{1}\right)^{2}-m^{2}\right)\left(q-p_{2}\right)^{2}\left(\left(q-2 p_{2}\right)^{2}-m^{2}\right)} \\
&= \frac{-4}{s} D_{0}\left[p_{1}+p_{2}, p_{1}+2 p_{2},-p_{1}, 0,0, m, m\right]+\int \frac{\mathrm{d}^{D} q}{(2 \pi)^{D}} \\
& 2 / s\left(s / 2-4 q \cdot p_{1}+4 q \cdot p_{2}-8 m^{2}\right) \\
&\left(q^{2}-m^{2}\right)\left(q+p_{1}\right)^{2}\left(\left(q+2 p_{1}\right)^{2}-m^{2}\right)\left(q-p_{2}\right)^{2}\left(\left(q-2 p_{2}\right)^{2}-m^{2}\right) \\
&= \operatorname{First} \operatorname{Term}+\int \frac{\mathrm{d}^{D} q}{(2 \pi)^{D}} \int_{0}^{1} \\
& \frac{\Pi_{i=1}^{5} \mathrm{~d} x_{i} \delta\left(\sum_{j=1}^{5} x_{j}-1\right) 4!\left(1-16 m^{2} / s\right)(1-X-Y)}{\left[\left(q+X p_{1}-Y p_{2}\right)^{2}-m^{2}(1-X-Y)^{2}+X Y s / 4\right]^{5}}
\end{aligned}
$$

(1) where $X=x_{1}+2 x_{2}, Y=x_{3}+2 x_{4}$. The First Term is IRand Coulomb-finite. It can be calculated in $D=4$ space-time dimension and $v=0$, it is

$$
\begin{equation*}
\frac{2 \sqrt{4 m^{2}-s} \tan ^{-1} \frac{\sqrt{s}}{\sqrt{4 m^{2}-s}}-\sqrt{s} \ln \frac{-s}{m^{2}}}{-i \pi^{2} m^{2} s^{5 / 2}} \tag{15}
\end{equation*}
$$

(1) where $X=x_{1}+2 x_{2}, Y=x_{3}+2 x_{4}$. The First Term is IRand Coulomb-finite. It can be calculated in $D=4$ space-time dimension and $v=0$, it is

$$
\begin{equation*}
\frac{2 \sqrt{4 m^{2}-s} \tan ^{-1} \frac{\sqrt{s}}{\sqrt{4 m^{2}-s}}-\sqrt{s} \ln \frac{-s}{m^{2}}}{-i \pi^{2} m^{2} s^{5 / 2}} \tag{15}
\end{equation*}
$$

(2) The second term is IR- and Coulomb-finite too. Choose $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\{1-a, a b(1-c), a(1-b), a b c d, a b c(1-d)\}$ and integrate a, b, d, c step by step in Mathematica,
(1) where $X=x_{1}+2 x_{2}, Y=x_{3}+2 x_{4}$. The First Term is IRand Coulomb-finite. It can be calculated in $D=4$ space-time dimension and $v=0$, it is

$$
\begin{equation*}
\frac{2 \sqrt{4 m^{2}-s} \tan ^{-1} \frac{\sqrt{s}}{\sqrt{4 m^{2}-s}}-\sqrt{s} \ln \frac{-s}{m^{2}}}{-i \pi^{2} m^{2} s^{5 / 2}} \tag{15}
\end{equation*}
$$

(2) The second term is IR- and Coulomb-finite too. Choose $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\{1-a, a b(1-c), a(1-b), a b c d, a b c(1-d)\}$ and integrate a, b, d, c step by step in Mathematica,
©

$$
\begin{equation*}
\frac{2\left(4 m^{2}-s\right)^{3 / 2} \tan \frac{-1 \sqrt{s}}{\sqrt{4 m^{2}-s}}+\sqrt{s}\left(i \pi\left(3 m^{2}-s\right)+\left(s-4 m^{2}\right) \ln \frac{-s}{m^{2}}\right)}{8 i m^{4} \pi^{2}\left(4 m^{2}-s\right) s^{5 / 2}\left(16 m^{2}-s\right)^{-1}} \tag{16}
\end{equation*}
$$

and $\ln \left(-s / m^{2}\right)=\ln \left(-(s+i 0) / m^{2}\right)=\ln \left(s / m^{2}\right)-i \pi$.
(1) $D_{0}\left[-p_{1},-p_{1}-p_{2}, p_{1}, 0, m, 0, m\right]$ term in Eq. (15) is,

$$
\begin{align*}
& D_{0}\left[-p_{1},-p_{1}-p_{2}, p_{1}, 0, m, 0, m\right]= \\
& \quad \frac{4}{s} C_{0}\left[-p_{1}, p_{1}, 0, m, m\right]+\frac{i}{(4 \pi)^{2}} \frac{2 i \pi-2 \ln 4}{m^{2} s} . \tag{17}
\end{align*}
$$

(1) $D_{0}\left[-p_{1},-p_{1}-p_{2}, p_{1}, 0, m, 0, m\right]$ term in Eq. (15) is,

$$
\begin{align*}
& D_{0}\left[-p_{1},-p_{1}-p_{2}, p_{1}, 0, m, 0, m\right]= \\
& \quad \frac{4}{s} C_{0}\left[-p_{1}, p_{1}, 0, m, m\right]+\frac{i}{(4 \pi)^{2}} \frac{2 i \pi-2 \ln 4}{m^{2} s} . \tag{17}
\end{align*}
$$

(2) This term will appear in Box N5, N8.

$$
\begin{align*}
& C_{0}\left[p_{1 c},-p_{1 \bar{c}}, 0, m, m\right] \\
= & \frac{-i}{2 m^{2}(4 \pi)^{2}}\left(\frac{4 \pi \mu^{2}}{m^{2}}\right)^{\epsilon} \Gamma(1+\epsilon)\left[\frac{1}{\epsilon}+\frac{\pi^{2}}{v}-2\right] \tag{18}
\end{align*}
$$

where $v=\left|\overrightarrow{p_{1 c}}-\overrightarrow{p_{1 \bar{c}}}\right| / m$, defined in meson c.m. frame.

Five point integrate of exclusive process of $S+P$ wave

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}} \tag{19}
\end{equation*}
$$

p in this diagram is more complex, but it can be integrated analysis.

IBP ruduction in five point integrate of $S+P$ wave

(1) Solve the equation

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}}=1 \tag{20}
\end{equation*}
$$

IBP ruduction in five point integrate of $S+P$ wave

(1) Solve the equation

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}}=1 \tag{20}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}} \tag{21}
\end{equation*}
$$

IBP ruduction in five point integrate of $S+P$ wave

(1) Solve the equation

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}}=1 \tag{20}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}} \tag{21}
\end{equation*}
$$

(3) For there is only two independent momentum, we can reduce $\int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}}$. again.

IBP ruduction in five point integrate of $S+P$ wave

(1) Solve the equation

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}}=1 \tag{20}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}} \tag{21}
\end{equation*}
$$

(3) For there is only two independent momentum, we can reduce $\int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}}$. again.
(9) Then we can get $\int \frac{\mathrm{d}^{D} q}{N_{0}^{3} N_{1}^{2} N_{2}}, \int \frac{\mathrm{~d}^{D} q}{N_{0}^{2} N_{1}^{2} N_{2}^{2}} \ldots$

IBP ruduction in five point integrate of $S+P$ wave

(1) Solve the equation

$$
\begin{equation*}
\sum_{i=1}^{4} a_{i} \frac{N_{i}}{N_{0}}=1 \tag{20}
\end{equation*}
$$

(2)

$$
\begin{equation*}
\int \frac{\mathrm{d}^{D} q}{N_{0}^{2} N_{1} N_{2} N_{3} N_{4}}=\sum_{i=1}^{4} a_{i} \int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}} \tag{21}
\end{equation*}
$$

(3) For there is only two independent momentum, we can reduce $\int \frac{N_{i} \mathrm{~d}^{D} q}{N_{0}^{3} N_{1} N_{2} N_{3} N_{4}}$. again.
(9) Then we can get $\int \frac{\mathrm{d}^{D} q}{N_{0}^{3} N_{1}^{2} N_{2}}, \int \frac{\mathrm{~d}^{D} q}{N_{0}^{2} N_{1}^{2} N_{2}^{2}} \ldots$
(3) It can be calculated with IBP reduction. (Feng Feng's Talk)

Numerical Result

Numerical Result of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$

(1) Select $m_{J / \psi}=m_{\eta_{c}}=2 m, \quad m=1.5 \mathrm{GeV}, \Lambda_{\mathrm{MS}}^{(4)}=338 \mathrm{MeV}$, then $\alpha_{s}(2 m)=0.259$, and the cross section at NLO is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=15.7 \mathrm{fb}, \tag{22}
\end{equation*}
$$

which is larger than LO cross section 8.0 fb by a factor of 1.96 .

Numerical Result of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$

(1) Select $m_{J / \psi}=m_{\eta_{c}}=2 m, \quad m=1.5 \mathrm{GeV}, \Lambda_{\mathrm{MS}}^{(4)}=338 \mathrm{MeV}$, then $\alpha_{s}(2 m)=0.259$, and the cross section at NLO is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=15.7 \mathrm{fb}, \tag{22}
\end{equation*}
$$

which is larger than LO cross section 8.0 fb by a factor of 1.96 .
(2) If we select $m=1.4 \mathrm{GeV}, \mu=2 m$, the NLO cross section is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=18.9 \mathrm{fb}, \tag{23}
\end{equation*}
$$

which is larger than LO cross section 9.2 fb by a factor of2. 05 .

Numerical Result of $e^{+} e^{-} \rightarrow J / \psi+\eta_{c}$

(1) Select $m_{J / \psi}=m_{\eta_{c}}=2 m, \quad m=1.5 \mathrm{GeV}, \Lambda_{\mathrm{MS}}^{(4)}=338 \mathrm{MeV}$, then $\alpha_{s}(2 m)=0.259$, and the cross section at NLO is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=15.7 \mathrm{fb}, \tag{22}
\end{equation*}
$$

which is larger than LO cross section 8.0 fb by a factor of 1.96 .
(2) If we select $m=1.4 \mathrm{GeV}, \mu=2 m$, the NLO cross section is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=18.9 \mathrm{fb}, \tag{23}
\end{equation*}
$$

which is larger than LO cross section 9.2 fb by a factor of2.05 .

- It is can be compared with the B factories data $17 \sim 25 \mathrm{fb}$

Cross sections as functions of the renormalization scale μ. Here $\left|R_{S}(0)\right|^{2}=0.978 \mathrm{GeV}^{3}, \Lambda=0.338 \mathrm{GeV}, \sqrt{s}=10.6 \mathrm{GeV}$; NLO results are represented by solid lines and LO one by dashed lines; the upper line is for $m=1.4 \mathrm{GeV}$ and the corresponding lower line is for $m=1.5 \mathrm{GeV}$.

If we select $\overline{\mathrm{MS}}$ scheme for the charm mass, using $m_{O S}=1.5 \mathrm{GeV}$, the corresponding $\overline{\mathrm{MS}}$ mass is $\bar{m}=1.30 \mathrm{GeV}$ defined by $m_{\overline{\mathrm{MS}}}(\bar{m})=\bar{m}$. And $m_{\overline{\mathrm{MS}}}(3 \mathrm{GeV})=1.16 \mathrm{GeV}$. With the $\mu=2 m_{O S}$, we get the cross section at NLO of α_{s}

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+\eta_{c}\right)=21.4 \mathrm{fb} \tag{24}
\end{equation*}
$$

which is a factor of 2.1 larger than the $L O$ cross section 10.3 fb .

Cross sections as functions of the renormalization scale μ. Here $m_{O S}=1.5 \mathrm{GeV}$, and the corresponding $\overline{\mathrm{MS}}$ mass is $\bar{m}=1.30 \mathrm{GeV}$; the solid line is for $\overline{\mathrm{MS}}$ mass scheme and the dashed line is for on-shell mass scheme.

Cross sections rescaled by the corresponding value at $\mu=\sqrt{s} / 2$ as functions of the renormalization scale μ. NLO results are represented by solid lines and LO one by dashed lines; the upper line is for on-shell mass scheme and the corresponding lower line is for $\overline{\mathrm{MS}}$ mass scheme.

Numerical Result of $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}$

Using the experimental value
$\Gamma\left(J / \psi \rightarrow e^{+} e^{-}\right)=5.55 \pm 0.14 \pm 0.02 \mathrm{KeV}[*]$, we obtain
$\left|R_{S}(0)\right|^{2}=1.01 \mathrm{GeV}^{3}$. Taking $\Lambda_{\overline{M S}}^{(4)}=338 \mathrm{MeV}$,
$m_{J / \psi}=m_{\eta_{c}}=2 m$ (in the nonrelativistic limit). If we set $m=1.4 \mathrm{GeV}$ and $\mu=2 m$, the cross section at next-to-leading order of α_{s} is

$$
\begin{equation*}
\sigma\left(e^{+}+e^{-} \rightarrow J / \psi+c \bar{c}+X\right)=0.47 \mathrm{pb} \tag{25}
\end{equation*}
$$

It is about a factor of 1.7 larger than leading order cross section 0.27 pb .

Cross sections as functions of the renormalization scale μ. The upper line is for $m=1.4 \mathrm{GeV}$ and the corresponding lower line is for $m=1.5 \mathrm{GeV}$.

Cross sections as functions of the charm quark mass m_{c}. The upper line is for $\mu=2.8 \mathrm{GeV}$ and the corresponding lower line is for $\mu=5.3 \mathrm{GeV}$.

For the experiment date is the prompt $J / \psi+c \bar{c}+X$ cross section. Combine the feed down contributions, if we set $m=1.5 \mathrm{GeV}$ and $\mu=2 m$, then the prompt cross section of $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X$ at next-to-leading order of α_{s} is

$$
\begin{equation*}
\sigma_{\text {prompt }}\left(e^{+}+e^{-} \rightarrow J / \psi+c \bar{c}+X\right)=0.50 \mathrm{pb} \tag{26}
\end{equation*}
$$

It is 67% of the experiment date 0.74 pb in Eq. (2).
If we set $m=1.4 \mathrm{GeV}$ and $\mu=2 m$, ignore the other difference of other contributions, then the prompt cross section of $e^{+} e^{-} \rightarrow J / \psi+c \bar{c}+X$ at next-to-leading order of α_{s} is

$$
\begin{equation*}
\sigma_{\text {prompt }}\left(e^{+}+e^{-} \rightarrow J / \psi+c \bar{c}+X\right)=0.71 \mathrm{pb} \tag{27}
\end{equation*}
$$

It is about 96% of the new Belle date 0.74 pb in Eq. (2).

Numerical result of $J / \psi g g$

	Belle Data	$\mu=2.8$ GeV LO	$\mu=2.8$ GeV NLO	$\mu=5.3$ GeV LO	$\mu=5.3$ GeV NLO
$\sigma(g g)$	0.43	0.57	0.67	0.36	0.53
$\sigma(c \bar{c})$	0.74	0.38	0.71	0.24	0.53
$R_{c \bar{c}}$	0.63	0.40	0.51	0.40	0.50

Table: Cross sections of prompt (feeddown included) $J / \psi g g$ and $J / \psi c \bar{c}$ production in $e^{+} e^{-}$annihilation at B factories in units of pb .

Summary

We calculated the NLO QCD corrections of J / ψ production at B factories, the NLO QCD corrections improved the cross sections can be compared with the B factories data.

Thanks!

