Feynman Loop Integral Computation on Hybrid Platforms - Parallel computation of DCM -

primary author: E. de Doncker (Western Michigan Univ.) co-authors: F. Yuasa (KEK) and R. Assaf (Western Michigan Univ.) presented by F. Yuasa (KEK) in place of Elise

2013/05/17

Plan of Talk

- Motivation
- Direct Computation Method (DCM)
- Parallel Computing of DCM
- Timing results
- Summary and future plans

Motivation

- High Precision theoretical calculations are required for LHC, ILC and other HEP experiments
- Higher order corrections require the evaluation of complicated Feynman loop diagrams
- Analytical approach
 - One-loop up to 4 legs + reduction for more legs
 - Difficulty: more loops, more legs, various physical parameters
- Numerical approach
 - We propose DCM
 - A fully numerical method
 - Up to two-loop with 4 legs with masses
 - Difficulty: numerical cancellation, long computation time

Feynman loop integrals for L-loops with N internal lines

Scalar integral

$$(-1)^{N} \left(\frac{1}{4\pi}\right)^{nL/2} \Gamma(N - nL/2) \int_{0}^{1} \prod_{i=1}^{N} dx_{i} \delta(1 - x_{1} \cdots - x_{N}) \frac{C^{N - n(L+1)/2}}{(D - i\varepsilon C)^{N - nL/2}}$$

D and C functions are polynomials of Feynman parameters $\{x_i\}$

Direct Computation Method (DCM) Ref. CPC 159 (2004) 145

DCM is a fully numerical method Combination of <u>numerical multivariate integration</u> and <u>numerical extrapolation</u>($\varepsilon \rightarrow 0$)

Program flow of DCM

1st step Let ε be finite as $\varepsilon_l = \frac{\varepsilon_0}{(A_c)^l}$, $A_c > 1$ with l=0,1,2,... ε_0 and a constant A_c are positive numbers

2nd step

Evaluate the integral $I(\varepsilon_l)$ numerically and get the sequence of $I(\varepsilon_l)$ with l=0,1,2,...

3rd step

Extrapolate the sequence $I(\varepsilon_l)$ to the limit $(\varepsilon \rightarrow 0)$ and determine I

 ϵ_0 and A_c are chosen empirically

We are using DQAGE routine for multivariate integration This step is time consuming

(DQAGE : www.netlib.org/quadpack/)

We are using Wynn's epsilon algorithm Computation time is negligible

2013/05/17

Example of computation time of DCM two-loop non-planar box with masses in physical region

(numerical results were presented in ACAT2011) *Ref.* CPC 183 (2012)2136 $p_1 \xrightarrow{x_1, m, x_4, m} p_3$ $p_2 \xrightarrow{x_2, m, x_6, m} p_4$

fs= s/m ²	Computation time	key	Limit	For $f_s = -1$, computation
6.0	16 hours	2	10, 20, 10, 10, 10, 10	time is ~24 sec.
7.0	2 days	2	10, 20, 10, 10, 10, 10	
10.0	1 week	2	10, 10, 10, 10, 10, 10	

 $m=50 \text{ GeV}, M = 90 \text{ GeV}, t = -100^2 \text{ GeV}^2$

by single CPU: Intel(R) Xeon(R) CPU X5460 @ 3.16GHz

Integration parameter

Key : Gauss-Kronrod rule, 10 - 21 points when key = 2 Limit: an upperbound on the number of subintervals

Parallel computing is required for the numerical integration

2013/05/17

Real Part

Parallel computing

- Parallel programming model
 - Distributed memory
 - MPI (de facto standard)
 - Shared memory
 - OpenMP (de facto standard)
 - Available with many compilers
 - "f90", "gfortan" , "ifort ", "pgi" ...
- Acceleration of computing using GPUs

Our approach

Parallelization of DQAGE routine for a numerical integration using OpenMP

Shared memory

Parallel numerical iterated integration

• DQAGE: a 1D adaptive integration code

• The integration is performed with the (7, 15)- or the (10, 21) – points Gauss-Kronrod pairs.

$$\int_{a}^{b} dx_{j} F(c_{1}, \dots, c_{j-1}, x_{j}) \approx \sum_{k=1}^{K} w_{k} F(c_{1}, \dots, c_{j-1}, x^{(k)})$$

$$w_{k}: weights$$

$$X^{(k)}: abscissae$$
This can be evaluated in parallel

The current implementation allows for a nested parallelization in the outer and the next to outer level.

Nested parallelism

- For example, DQAGE with 15-point (21-point) Gauss-Kronrod pair: best improvement around 15 (21) threads; then tends to level off.
- For example, performance with 15-point rule is excellent on 16core node. What about 32-core node?
- Additional performance can be obtained by nested threading. For example,
 - 15 threads assigned to the rule eval. on the outer $(x_i \text{ level})$;
 - each function eval. on x_1 level is an integral on x_2 level;
 - for each thread on x_1 level, new threads spawned on x_2 level.

Timing results on computers below

hosts	CPU	# of cores	compiler
Minamivtoo5	Xeon X-568o,	6 cores/	ifort -openmp
(KEK)	3.3 GHz	node	
SR16000 / M1	Power7,	32 cores/	f90 -omp
(KEK)	3.83 GHz	node	
Intel cluster	Xeon E5-2670,	16 cores/	gfortran -fopenmp
(WMU)	2.6 GHz	node	

1st example one-loop integral with 5 legs

With nested threading on 32-core node

- Previous plot was obtained on 16-core nodes.
- Timings on 32-core node with 15-point rules, (j x k: j threads on x₁ level and k threads on x₂ level) example times:
 - 15 x 1: 6632 sec
 - 30 x 1: 5909 sec
 - 15 x 15: 3630 sec (gives best results)

Summary and future plans

- DCM (Direct Computation Method) is a fully numerical method for evaluating Feynman loop integrals. It is available for two-loop integrals with masses.
- It is clearly shown that the computation time of loop integrals by DCM can be reduced using OpenMP with parallelized DQAGE routine in QUADPACK.
- Future plans
 - We will do the timing evaluation for more computational intensive loop integrals such as two-loop box integral.
 - The current parallel DQAGE allows for a nested parallelization in the outer and the next to the outer level of the multivariate integration. This can be extended to more levels.

Summary and future plans (cont'd)

Hybrid Platforms

- Use of MPI
 - As in ParInt (http://www.cs.wmich.edu/parint/), with region partitioning and region evaluations distributed over the nodes (+ load balancing), and multi-threading on the nodes.
 - For sets of integrals, e.g., as resulting from reductions: nodes obtain new problem specifications from task pool or task server upon request; multi-threading within each node. For example, hexagon reduction into 6 pentagons, or distribution on box level (individual problems benefit from multi-threading).
- Use of GPUs and other accelerators (and MPI/GPUs)
 - GPUs: for 'regular' rules (grid/lattice-QMC rules and types of MC)
 - Intel Xeon Phi 5110P coprocessor with 60 cores and 8GB memorys

Thank you !