
Study of cache performance in distributed

environment for data processing

Dzmitry Makatun1,3, Jérôme Lauret2 and Michal Šumbera3

1Faculty of Nuclear Physics and Physical Engineering, Czech Technical University in Prague
2STAR, Brookhaven National Laboratory, USA
3Nuclear Physics Institute, Academy of Sciences, Czech Republic

E-mail: makatun@rcf.rhic.bnl.gov

Abstract. Processing data in distributed environment has found its application in many
fields of science (Nuclear and Particle Physics (NPP), astronomy, biology to name only
those). Efficiently transferring data between sites is an essential part of such processing. The
implementation of caching strategies in data transfer software and tools, such as the Reasoner
for Intelligent File Transfer (RIFT) being developed in the STAR collaboration, can significantly
decrease network load and waiting time by reusing the knowledge of data provenance as well
as data placed in transfer cache to further expand on the availability of sources for files and
data-sets. Though, a great variety of caching algorithms is known, a study is needed to evaluate
which one can deliver the best performance in data access considering the realistic demand
patterns. Records of access to the complete data-sets of NPP experiments were analyzed and
used as input for computer simulations. Series of simulations were done in order to estimate
the possible cache hits and cache hits per byte for known caching algorithms. The simulations
were done for cache of different sizes within interval 0.001 - 90% of complete data-set and
low-watermark within 0-90%. Records of data access were taken from several experiments and
within different time intervals in order to validate the results. In this paper, we will discuss the
different data caching strategies from canonical algorithms to hybrid cache strategies, present
the results of our simulations for the diverse algorithms, debate and identify the choice for
the best algorithm in the context of Physics Data analysis in NPP. While the results of those
studies have been implemented in RIFT, they can also be used when setting up cache in any
other computational work-flow (Cloud processing for example) or managing data storages with
partial replicas of the entire data-set.

1. Introduction
Efficient usage of available cache space is important for transferring and accessing data in
computational grids. Though, a great variety of caching algorithms is known, a study is needed
to evaluate which one can deliver the best performance in data access considering the realistic
demand patterns.

Cache cleaning algorithms can be applied to keep in the cache of data-transfer tools files that
may be reused. The size of those cache is small (several percent of the entire dataset) and the
clean up has to take place regularly to make space for further transfers. Another task can, for
example, be to delete a part of local data replica if no longer in use or requested. The problem
posed by cache cleanup is to select and delete files which are the least likely to be used again.
An investigation to find the most appropriate algorithm is required.



In this study, all the caching algorithm were implemented following the concept known as
”water-marking”. Water-marking is an approach where thresholds are set for the cache cleanup
starts and stops. It considers the current disk space occupied by the data in cache and the
high-mark and the low-mark for cache size are externally set up and can be adjusted as needed.
When the used cache size exceeds the high-mark, the cache clean-up starts, and files are deleted
until the used cache size gets below the low-mark. The time interval between clean-ups depends
on combination of high/low marks, cache size and data-flow. With watermarking concept more
computational demanding algorithms can be implemented as the cleanup may be independent
of the data transfers.

2. Access patterns
Several data access patterns were extracted from log files of data management systems at sites
of HEP/NPP experiments in order to simulate caching. Three different access patterns were
used as input for our simulations:

STAR1: the pattern was extracted from Xrootd [8] logs taken from the STAR experiment’s
Tier-0 site of RHIC Computing Facility at Brookhaven National Laboratory (RCF@BNL),
it consist of records made during a 3 months period (June-August 2012) of all datasets
available in STAR.

STAR2: extracted from the same data management system, but of records made during
a 7 months period (August 2012 - February 2013) under similar conditions.

GOLIAS farm is part of regional computing center for particle physics at the Institute of
Physics (FZU) in Prague, and is part of a Tier-2 site for the CERN/ATLAS experiment.
The facility also performs data processing for another experiment - AUGER, which makes
less than 1% of the total requests. The pattern was extracted from DPM [9] logs for a 3
months period (November 2012 - February 2013).

The usage of access patterns corresponding to different time periods and experiments helps
to verify the results of our simulations. As input of our simulations, we tried to focus on a few
characteristic access patter. The key parameters we came up with for the three access patterns
are given in Table 1. Both STAR access patterns have similar parameters. It is noteworthy to
mention that the first one was taken right before the Quark Matter 2012 conference and the
second one, right after. This is important as the access to data is intensified before a conference
and without verification, it would be doubtful if our findings would be stable across time. The
number of files requested only once during the period, is less than 10% in both cases.

The FZU/GOLIAS access pattern is taken from another experiment with different data-
storage structure, DPM is used here within a Tier-2 data access context (user analysis). This
access pattern is much less uniform and differs from the other two: the size of files is not explicitly
limited and can reach 18 GB, the number of requests for a file varies from 1 up to 94260, with
an average 5, while it varies from 1 to 203 for the STAR patterns. 44% of files were requested
only once

Our analysis is not sensitive to the particular Data Management system, (XRootD or DPM),
further we explain differences in the access patterns with specifics of experiment and role of the
cluster in the system (tier level).

3. Cache simulation
The efficiency of caching can be estimated by two quantities, the cache hits H and cache hits
per megabyte of data Hd from here on referred to as cache data hits:

H =
Ncache

Nreq −Nset
(1)



Table 1. Summary of three user access patterns used as input for simulations. The selection
of two time sequence in STAR and one from a different experiment aims at verifying stability
of our result and findings.

STAR1 STAR2 GOLIAS

Time period months 3 7 3
Number of requests ×106 33 52 21
Data transferred PB 50 80 10
Maximal number of requests for one file − 192 203 94260
Average number of requests per file − 19 15 5
Number of unique files ×106 1.8 1.7 3.8
Total size of dataset PB 1.45 2 1
Maximal file size GB 5.3 5.3 18
Average file size GB 0.8 1 0.3

Hd =
Scache

Sreq − Sset
(2)

where Nreq is the total number of requests, Sreq -the total amount of transferred data in bytes,
Nset -the number of unique files witch were requested at least ones during the considered period,
Sset - the total size of those unique files in bytes, Ncache - the number of files transferred from
cache, Scache - the amount of data transferred from cache in bytes.

By maximizing the cache hits H one reduces the number of files transferred from external
sources and thus reduces the overall make-span due to transfer startup overhead for each file.
By maximizing the cache data hits Hd one reduces the network load, since more data is reused
from the local cache.

If the access pattern is completely random, the expected cache hit and cache data hits would
be equal to cache size/storage size, so it can be useful to compare the actual cache performance
to this estimation.

Altogether 27 different caching algorithms were simulated. But the majority of studied
algorithms did not bring any improvements over the simplest one (FIFO). Only the algorithms
that appeared to be the most efficient are discussed in this paper:

- First-In-First-Out (FIFO): evicts files in the same order they entered the cache.
Performance of this trivial algorithm provide a good comparison benchmark against more
sophisticated ones which can demand significant computational resources.

© Least-Recently-Used (LRU): evicts the set of files which were not used for the longest
period of time.

• Least-Frequently-Used (LFU): evicts the set of files which were requested less times
since they entered the cache.

F Most Size (MS): evicts the set of files which have the largest size.

+ Adaptive Replacement Cache (ARC)[5]: splits cached files into two lists: L1 - files
with access count = 1, and L2 - files with access count > 1. LRU is then applied to both
list, the self adjustable parameter p = cache hits in L1/cache hits in L2 defines the number
of cached files in each list. The general idea is to invest more into the list which delivers
more hits.



∗ Least Value based on Caching Time (LVCT)[4]: Deletes files with the smallest value
of the Utility Function:

UtilityFunction =
1

CachingT ime× FileSize
(3)

where Caching Time of a file F is total size of all files accessed after the last request for
the file F.

5 Improved-Least Value based on Caching Time (ILVCT)[3]: Deletes files with the
smallest value of the Utility Function:

UtilityFunction =
1

NumberOfAccessedF iles× CachingT ime× FileSize
(4)

where Caching Time is the same as for LVCT and Number Of Accessed Files is a
number of files requested after the last request for selected file.

4. Results
Three series of simulations with three access patterns were performed for each algorithm (90
simulations in total for each algorithm):

• 10 simulations with cache size 1-90 % of storage with fixed low-mark 75% and high-mark
95%. Those simulations aim to understand what would happen if we have large storage
cache. Those cases are aligned with a DPM and Xrootd use where most (if not all) the
dataset(s) are in the system.

• 10 simulations with cache size 1.2 - 0.0025% of storage with fixed low-mark 75% and high-
mark 85%. This high-mark was selected in order to leave enough margin (15%) in case
when a large file is requested at the moment when the cache is almost full. We used those
simulations to understand the behavior of cache cleanup if the cache size is by several orders
less than the dataset size. This is in fact a most common case for transfer cache on data
transfer nodes.

• 10 simulations with fixed cache size 10% of storage,fixed high-mark 95% and variable low
mark within 0-90%. We performed those simulations to better understand the effect of data
retention on cache (delete the least in hope of re-use).

In order to compare one algorithm against another an average improvement can be calculated
in a following way:

Average improvement =

∑n
i=1

value2i−value1i
value1i

n
, (5)

where n is the total amount of simulations with equal parameters for both algorithms, i is the
number of the simulation,value1 - cache hits or cache data hits of a reference algorithm (FIFO),
value2 - cache hits or cache data hits of a compared algorithm.

Table 2 contains the results of comparison of all the algorithms represented in this paper
against FIFO. 60 values for each algorithm were taken from results of simulation series 1 and
2 in order to calculate the average improvement. According our results, the LFU algorithm
does not bring any improvement over FIFO due to its well known flaw - it accumulates files
which were popular for a short period of time, and those files prevent newer ones from staying
in cache. The ARC algorithm was developed as an improvement to LRU, and not surprisingly,
it outperforms LRU by ∼5% in cache hits and ∼7% in cache data hits. Therefore, LFU and
LRU algorithms could be excluded from the further analysis in our case studies.



Table 2. Average improvement of algorithms over FIFO.

Algorithm cache hits cache data hits

MS 116 % -20 %
LRU 8 % 5 %
LFU -27 % -18 %
ARC 13 % 11 %
LVCT 86 % 2 %
ILVCT 28 % 2 %

The graphical detailed results of simulations for all 3 series are given at Figures 1-3. The
performance of FIFO and 3 algorithms appeared to be the most efficient (MS, ACR and LVCT)
is presented at the plots.

Difference between Tier-2 and Tier-0 access patterns leads to distinct cache performance.
Only the data dedicated for the ongoing analysis is placed at the Tier-2 site, while at the Tier-0
site all the experimental data is stored. As a result – the access pattern at the Tier-2 site
has stronger access locality. STAR1 and STAR2 access patterns correspond to Tier-0 site and
GOLIAS to a Tier-2 site. Thus, any particular algorithm at the plots delivers higher cache hits
and cache data hits for GOLIAS access pattern than for STAR1 and STAR2.

The behavior of algorithms is similar within each dataset that is, their respective performance
ordering is the same. This observation implies that if one of the algorithm appears to be
most efficient for one of the datasets it is also the most efficient for the other datasets. This
statement is also true for the rest of simulated algorithms not present on our figure. Though
the communities represented by the STAR and GOLIAS access patterns are somewhat similar,
this result is slightly surprising as our case studies represent two time sequence within the same
usage and totally uncorrelated experiments. It would be interesting to study those algorithms in
a different experimental context (outside the HEP/NPP communities) but this study is outside
the scope of our paper.

The MS algorithm has shown outstanding cache hits, but the lowest cache data hits. At
the same time the LVCT has cache hits comparable to the MS while cache data hits are 2%
improved over the FIFO. This algorithm could be an optimal when the cache hits is the target
optimization parameter. The ARC algorithm has shown the highest cache data hits for studied
access patterns.

The dependence of algorithms performance on low mark is presented at Figure 3. With
higher low mark the number of clean-ups increases and that is why the difference between
algorithms becomes more notable. Performance of efficient algorithms (FIFO, LRU, ARC and
LVCT) increases steadily with the low mark. One should be careful when setting up a cache low
mark at a particular site, since a higher low mark can increase cache performance significantly,
but at the same time it can result in running cache clean-ups too often, consuming significant
computational resources (and potentially increasing the chance to interfere with data transfers
hence, degrading transfer performances if delete/writes/read overlap).

5. Conclusion
Performance of cache algorithms implemented with watermarking concept was simulated for a
wide range of cache sizes and low marks. Three access patterns from Tier-0 and Tier-2 sites
of 2 different experiments were used as input for simulations. Regardless of the cache size,
Tier-level and specificity of experiment the LVCT and ARC appeared to be the most efficient
caching algorithms for the communities we investigated. While we found the stability of relative



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

cache size / storage size
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ca
ch

e 
da

ta
 h

its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

FIFO

LVCT

MS

Figure 1. Results of simulation. Performance of algorithms for cache of larger size can be
compared. For all of the simulations on this plot the following parameters were fixed: low mark
= 0.75, high mark = 0.95

-410 -310 -210

-310

-210

-110

1
cache hits

cache size / storage size
-410 -310 -210

-310

-210

-110

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

FIFO

LVCT

MS

Figure 2. Results of simulation. Performance of algorithms for cache of smaller size can be
compared. For all of the simulations on this plot the following parameters were fixed: low mark
= 0.75, high mark = 0.85



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache hits

low mark
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
cache data hits

patterns:
STAR1
STAR2
GOLIAS
random

algorithms:

ARC

LVCT

MS

FIFO

LRU

Figure 3. Results of simulation: dependence of cache performance on low mark. For all of the
simulations on this plot the following parameters were fixed: cache size / storage size = 0.1,
high mark = 0.95

algorithms’ performance surprising at first, we attribute this result to an access pattern which
is intrinsically similar in nature. An extension of this work could be the investigation of this
result in a different experiment context which is a work beyond our initial goal. LVCT and ARC
could certainly be safely implemented in tools such as RIFT.

• If the goal is to minimize makespan due to a transfer startup overhead the LVCT algorithm
should be selected.

• If the goal is to minimize the network load the ARC algorithm is an option.

Acknowledgments
The work has been supported by the grant 13-02841S of the Czech Science Foundation (GACR)
and the US Department of Energy. The support of the Visegrad Fund is gratefully acknowledged.
Furthermore the authors would like to acknowledge with much appreciation the help of the staff
of GOLIAS computer farm for kindly providing them with the log files and access to the facility
for running simulations.

References
[1] Makatun D, Lauret J and Sumbera M 2012 Distributed Data processing in high-energy physics Proc. of PhD

students workshop at FNSPN CVUT (Prague) ISBN 978-80-01-05138-2
[2] Zerola M, Lauret J, Bartak R and Sumbera M 2012 One click dataset transfer: toward efficient coupling of

distributed storage resources and CPUs J. Phys.: Conf. Ser. 368
[3] Achara J P, Rathore A, Gupta V K and Kashyap A 2010 An improvement in LVCT cache replacement policy

for data grid Proc. of the 13th Int. Workshop on Advanced Computing and Analysis Techniques in Physics
Research (Jaipur) p 44

[4] Song Jiang and Xiaodong Zhang 2003 Efficient Distributed Disk Caching in Data Grid Management Proc. of
the IEEE Int. Conf. on Cluster Computing (CLUSTER03) (Hong Kong) pp 446-51

[5] Megiddo, Nimrod and Modha D S 2004 Outperforming LRU with an adaptive replacement cache algorithm
Computer 37 58-65

[6] Fast Data Transfer Project web-site: http://monalisa.cern.ch/FDT/
[7] High Performance Storage System Project web-site: http://www.hpss-collaboration.org/



[8] Xrootd Project web-site: http://xrootd.slac.stanford.edu/
[9] Disk Pool Manager Project web-site: https://svnweb.cern.ch/trac/lcgdm/wiki/Dpm


