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Abstract. In a typical scientific computing centre, several applications coexist 
and share a single physical infrastructure. An underlying Private Cloud 
infrastructure eases the management and maintenance of such heterogeneous 
applications (such as multipurpose or application-specific batch farms, Grid 
sites, interactive data analysis facilities and others), allowing dynamic 
allocation resources to any application. Furthermore, the maintenance of large 
deployments of complex and rapidly evolving middleware and application 
software is eased by the use of virtual images and contextualization techniques. 
Such infrastructures are being deployed in some large centres (see e.g. the 
CERN Agile Infrastructure project), but with several open-source tools 
reaching maturity this is becoming viable also for smaller sites. In this 
contribution we describe the Private Cloud infrastructure at the INFN-Torino 
Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive 
Analysis Facility for the ALICE experiment at the CERN LHC and several 
smaller scientific computing applications. The private cloud building blocks 
include the OpenNebula software stack, the GlusterFS filesystem and the 
OpenWRT Linux distribution (used for network virtualization); a future 
integration into a federated higher-level infrastructure is made possible by 
exposing commonly used APIs like EC2 and OCCI.  

 
  



 
 
 
 
 
 

1.  Introduction 
The Computer Centre at INFN Torino hosts a medium-sized Scientific Computing infrastructure that 
caters to the needs of a number of applications, the largest ones being a WLCG Tier-2 Computing 
Centre [1] for the ALICE experiment at the CERN LHC [2] and a PROOF-based Parallel Interactive 
Analysis Facility [3] for the same experiment. The centre is planned to grow in the near future by 
integrating more use cases, including among others a Tier-2 computing centre for the BES-III 
Experiment at IHEP (Beijing) and a small computational farm for the local Theoretical Physics group.  

However, while the amount of resources and the variety of applications is steadily increasing, 
manpower unfortunately is not. It is thus becoming almost mandatory to consolidate such resources to 
achieve scalability and economies-of-scale not only by centralizing procurement but also and mainly 
by separating application management, that can be delegated to experienced users, from infrastructure 
management that can not. In this sense, Computing Centres need to become providers of computing 
and storage resources, not (only) of high level services. 

Beyond being a trend and a buzzword in the IT world, the Cloud Computing paradigm actually 
promises to be a way to raise the level of abstraction and implement such separation. By converting 
our computing farm into a Cloud infrastructure according to the Infrastructure-as-a-Service (IaaS) 
paradigm, we were successful in reducing the amount of manpower needed by management tasks. 
Processes such as the dynamical reallocation of resources across the applications, the maintenance of 
large deployments of complex and rapidly evolving middleware and application software, are eased by 
the use of virtual images and contextualization techniques. At the same time the flexibility of the 
infrastructure was increased, allowing us to easily provide on-demand computing resources to a 
number of smaller applications and short-term requirements. 

Furthermore, a number of larger-scale Cloud Computing project are starting in Italy and Europe to 
deploy large-scale distributed infrastructures: a local Cloud, provided its implementation is designed 
for interoperability, follows some existing standard, and exposes widely-used interfaces, should allow 
us to immediately take part in such activities. 

 
Given these considerations, and taking into account the need not only to maintain but also to 

develop the infrastructure with minimum manpower and effort, the system was designed along three 
guidelines: 

 
• Provide a production service to users as soon as possible 
• Favour manageability and flexibility over performance 
• Ensure interoperability with existing and upcoming infrastructures 

 
This translated into a number of design and implementation choices that will be described in the 

following sections. We choose only stable and widely used tools and components, such as the 
OpenNebula cloud stack and the GlusterFS filesystem, and try to develop in-house as few pieces as 
possible. Furthermore, an agile development cycle was adopted, with resources given to the users as 
soon as possible and features and functionalities introduced only when they become needed by the 
applications. 

2.  The components 
The middleware stack of choice is OpenNebula [4], an open-source software suite aimed at deploying, 
managing and monitoring Infrastructure-as-a-Service clusters widely used both in industry and in the 
research community. Even though most of the more recent Cloud projects use OpenStack [5], at the 
time we made the original choice the latter was judged not to be mature enough for a production 
environment. Furthermore, OpenNebula is arguably more suited for the task at hand (an advanced 
approach to data centre virtualization, with IaaS as a reference paradigm), whereas other stacks are 
more aimed at the full-fledged deployment of AWS-like infrastructures [6]. 

OpenNebula has many attractive features: 



 
 
 
 
 
 

 
• it has a modular and easily customizable architecture, mainly based on shell and ruby 

scripts; 
• it provides most of the needed features and functionalities, with the notable exception, as of 

version 3.8, of an integrated tool for network-on-demand, which prompted the 
developments described in section 5.  ; 

• it exposes, even if with different levels of maturity, industry-standard interfaces such as 
OCCI and EC2, along with the native OCA; 

• it includes SunStone, a functional web application for most of the management tasks. 
 

The versions used for the work described in this paper were 3.6 and later 3.8. Wide use is made of 
contextualization techniques, which allow us to maintain only a small number of very generic , very 
simple Operating System images, which are then set up and configured (“contextualized”) only at boot 
time. We are currently using the standard contextualization tools natively provided by OpenNebula [7] 
and maintaining a number of shell scripts, but work is ongoing to adopt CloudInit [15], a more 
advanced tool recently adopted by many Cloud Computing projects. 

 
Also for the backend storage (as opposed to data storage, which holds data to be accessed by the 

virtual workers, backend storage is used mainly to provide shared space to VMs and to distribute 
images across the physical hosts) a widely used tool was chosen, whose robustness and scalability has 
been proven by several very large deployments in the scientific and high-performance computing.  

GlusterFS [8] is an open-source filesystem for network-attached storage currently developed and 
maintained by RedHat. It provides horizontal scalability by aggregating storage servers (“bricks”) over 
the network into one large parallel file system with no master host: all synchronizations are peer-to-
peer and clients access data directly from the node hosting it. While reasonably easy to set up in the 
simpler configurations, it is at the same time flexible enough to cater to different needs with a single 
tool; in particular, GlusterFS can mimic some RAID functionalities, like striping or mirroring, at the 
filesystem level so that a filesystem can be optimized for performance or reliability. This feature was 
exploited as described in section 4.   

 
OpenNebula, while implementing tools for the definition and management of virtual networks at 

the cloud controller and hypervisor level, at the time lacked a tool for their implementation in the 
virtual infrastructure. We currently deploy Virtual Routers as small virtual machines based on 
OpenWRT [14], a lightweight Linux distribution designed for embedded systems; they provide 
internal and external connectivity to the virtual machines of a given application, alongside with tools 
for network configuration and management; details will be given in section 5.   
 

3.  A tale of two clusters 
The components of most Scientific Computing systems can be very roughly divided into three 
categories: general services, worker nodes, and storage. General services are needed to orchestrate the 
computation, provide access to the cluster, manage and monitor the system or provide specific services 
for the relevant use case (a typical example is an LRMS head node); worker nodes are the number 
crunchers that perform the actual calculation (being it data analysis, simulation, numerical 
computation etc.); storage services provide access to input data to be analysed and, if needed, storage 
space for output. The latter are distinguished from the storage system needed by the Cloud 
Infrastructure to operate (e.g. for distributing the virtual machine images across hosts); storage 
services for data are beyond the scope of this paper and below we will only briefly describe one type 
of data storage we use.  

“Servers” that provide general services and “Workers” that provide computational power have 
different requirements. In order to efficiently accommodate the two classes, the infrastructure 



 
 
 
 
 
 

comprises two groups of hosts (“Clusters” in OpenNebula terminology), the “Services Cluster” and 
the “Worker Clusters”; “Server-class” virtual machines will be instantiated on the Services Cluster, 
and “Worker-class” ones on the Workers clusters.  

The services are often critical for the functionality of the whole system, so they need resilient, 
redundant hardware and some form of High Availability may be desirable. Some services require 
inbound connectivity (at a bare minimum, for granting access to the system), whereas the local disk 
performance requirements may not be exceedingly tight. The hosts in this cluster are built on server-
class hardware with redundant RAID disks and power supplies. They are dual-homed with interfaces 
in both the public network and the workers’ private network  (private and public IPs) with both in- and 
out-bound connectivity to provide outside access to private machines. Conversely, workers that do 
data analysis need a high-throughput access to data storage, usually don’t need a public IP since data 
to be processed can be ether on local disk or on a local server reachable through the private network. 
Losing a Worker means only losing a small fraction of computational power, so they can use less 
redundant (and less expensive) hardware. The workers are typically dual-twin servers that share a 
redundant power supply among four motherboards, but have good network connection with the 
storage servers; the infrastructure currently includes about 40 such hosts.  

 
Any generic application (a “virtual farm” in the following) on our infrastructure can be viewed as a 

number of virtual machines in the Workers cluster managed by a number of services that run in virtual 
machines in the Services cluster. At the bare minimum, the only service needed is a Virtual Router to 
provide network services and access from the outside to a user’s virtual Worker Nodes. 

 

 

Figure 1. Example deployment of a Virtual Farm on the two clusters. VMs in 
the Workers Cluster are isolated from other VMs running on the infrastructure 
and connected to the external network through the Virtual Router. Higher-
level services can be run on the Worker cluster head node (e.g. a batch queue 
manager) or, if they are more critical or need outbound connectivity, on a 
separate VM on the Services cluster. 

 
 



 
 
 
 
 
 

The two clusters have been provided with different types of backend storage (“Datastores” in 
OpenNebula terminology) in order to optimize the performances and satisfy the above requirements, 
as described in section 3.   

4.   Storage backend architecture and GlusterFS 
The backend storage is used to distribute virtual images, in our case either RAW or QCOW2, to the 
physical hosts. As mentioned above, the Services and the Workers clusters have different 
requirements, most of which are fulfilled by Gluster filesystems served by two fileservers equipped 
with redundant hardware (RAID disks and power supplies) and 10Gbps Ethernet interfaces. An 
external redundant FibreChannel controller provides the physical storage units.  

The virtual images repository resides on a simple Gluster filesystem that currently comprises a 
single brick, but that can be scaled out by simply adding more bricks should more capacity be needed. 
All hosts mount this filesystem, from which the image needs to be copied by the relevant OpenNebula 
Transfer Manager to the datastore on which the running machine images will reside before it boots. 
Both the datastores and the copy mechanisms are different for the Services and Workers clusters. 

As mentioned, services may be crucial to the smooth running of the whole site, so one wants them 
to be resilient, i.e. to be able to tolerate with little or no interruption of service the failure of a 
hardware or software component. To this aim, all hosts in the Services cluster share a Gluster 
filesystem on which the image is copied just before the virtual machine boots. The filesystem is 
replicated across the two fileservers to ensure availability in case of the failure of one, with the 
Gluster’s self-healing feature enabled, and is shared across all physical hosts to allow for live 
migration of virtual machines from one host to another. Even if we currently don’t implement 
automatic High Availability mechanisms, this at the very least allows us to e.g. put offline a physical 
host for maintenance without service interruption, at the cost of a latency in the startup of the virtual 
machine while the image is copied from the repository to the Shared Datastore; this is generally 
deemed tolerable since the restart of a service is a rare event. Also the small price to be paid in terms 
of performance from having a host accessing its running image over the network is justified by the 
higher stability of the system. 

 

 

Figure 1. Architecture of the Backend Storage; Data Storage is not included. 

 
On the other hand, dynamic allocation of resource entails the need for the fast startup of large 

numbers of virtual machines, which would be impossible if the images needed to be copied every 
time. Furthermore, the computing capacity of the site depends heavily on the performance of worker 
nodes, so network latency towards the running image is to be avoided. Thus, hosts in the Workers 
cluster share no filesystem; their running images are cached asynchronously on the local disk of the 
host by a custom torrent-like tool (built upon scpWave [9] and rsync [10]) and managed by a custom-



 
 
 
 
 
 

written Transfer Manager, so that they are always already there when a virtual machine needs to boot. 
Of course this implies that a little care is required in the management of the images in order not to 
saturate the local disks that comprise this Cached Datastore. 

For the sake of completeness we just mention that also one of the applications running on the cloud 
infrastructure, the PROOF-based Virtual Analysis Facility [15], takes advantage of a performance-
optimized 50TB Gluster filesystem also for data access. 

5.  Virtual Farm networking and the V-Router 
As already mentioned, OpenNebula was lacking a tool to build and manage on-demand virtual 

networks to provide virtual farms with an isolated, flexible and secure network environment. In 
particular, for example, a tool was needed to provide access from the outside to private virtual 
machines. 

In our infrastructure, all physical hosts share a common private network, while the ones in the 
Services cluster also have a second interface on a public network.  Then, each application has its own 
private fully-featured class-C network built on top of the physical network. At level 2, these networks 
are isolated from each other using appropriate ebtables [11] rules defined on the hypervisor network 
bridge, to which obviously the users have no access.  

At level 3, each private network (except the larger one for the WLCG Tier-2, which is managed 
directly on the core switch of the infrastructure) is managed by a Virtual Router: a small virtual 
machine (one physical CPU, 150 MB memory) running OpenWRT, a lightweight Linux distribution 
originally designed for embedded systems. OpenWRT provides tools for network configuration and 
management such as NAT and DHCP, firewalling and port forwarding along with a web interface for 
their configuration and monitoring. The Virtual Routers run on the services clusters, both for 
robustness and to allow them to be accessed from the outside. 

In the standard configuration, port 22 on the public network of the Virtual Router is forwarded to 
port 22 on the private network of one of the nodes in the virtual farms, thus providing ssh access to 
manage the nodes; communication between nodes in the same virtual farms is open, whereas of course 
they have no way to access the private networks of other clusters. 

6.  Conclusions and outlook 
Currently the Torino Cloud hosts two main applications: a fully-fledged WLCG Tier-2 site for the 
ALICE experiment, in which all Grid services except the Storage Elements run on the Services cluster 
and the Worker Nodes on the Workers cluster; and a PROOF-based Virtual Analysis Facility for the 
same experiment, which has been described in detail elsewhere [15]. This last application, based upon 
CernVM [11], PoD [13] and PROOF, is currently the one that better exploits the IaaS features of the 
infrastructure. Alongside those, a number of smaller use cases have been successfully tested and more 
are planned to join in the next future, including a Tier-2 centre for the BES-III experiment. 

The infrastructure has now been in production for nearly two years; the tools of choice proved 
themselves satisfyingly stable and robust. This, together with the flexibility and manageability of the 
IaaS model, helped to reduce the management load on the Data Centre staff: as a trivial example, the 
frequent updates of the Grid middleware are now much faster and easier, as is reallocation of 
resources across different applications. 

There is of course still much room for improvement, and we are planning several updates to the 
system, both to improve the stability of the infrastructure and to provide new functionalities. 

For example, we are exploring the opportunities given by the CernVM “ecosystem”, in which the 
ongoing development of PROOF and the Virtual Analysis Facility is tightly entangled, to provide 
higher-level Platform-as-a-Service tools to experiments. We are also working on the Amazon EC2 
interface of OpenNebula to ensure interoperability with other similar infrastructures and we plan to 
participate in upcoming projects aimed at developing higher-level federated cloud infrastructures. 
Moreover, we are moving the first steps towards providing self-service systems for advanced users to 
deploy their virtual application farm in as simple as possible way. 



 
 
 
 
 
 

Acknowledgements 
The present work is partially funded under contract 20108T4XTM of “Programmi di Ricerca 
Scientifica di Rilevante Interesse Nazionale” (Italy). 
The authors want to acknowledge the support by the ALICE and BES-III communities, and in 
particular by their Italian components.  

References 
[1] http://wlcg.web.cern.ch/ 
[2] http://aliceinfo.cern.ch/ 
[3] http://aaf.cern.ch/  
[4] http://www.opennebula.org 
[5] http://www.openstack.org/  
[6] See for example http://blog.opennebula.org/?p=4042 
[7] http://opennebula.org/documentation:archives:rel3.8:context_overview 
[8] http://www.gluster.org 
[9] https://code.google.com/p/scp-wave/ 
[10] http://rsync.samba.org/ 
[11] http://ebtables.sourceforge.net/  
[12] http://cernvm.cern.ch/portal/ 
[13] Malzacher P and Manafov A 2010 J. Phys.: Conf. Ser. 219 072009  
[14] https://openwrt.org/  
[15] https://help.ubuntu.com/community/CloudInit  
[16] Berzano D et al. 2012 J. Phys.: Conf. Ser. 368 012019 
[17] http://aws.amazon.com/ec2/ 
 


