
Answers to referees’ questions
This cover letter contains answers to questions made by referees for the paper entitled ”The

Alignment of the CMS Silicon Tracker” (id: 67) submitted for ”ACAT2013”.
————————–
I am sorry for not answering your questions. This was due to the fact that the Indico system

did not provide a possibility to reply to your comments, and no instructions were available from
the web page either.

• 15) Discussion on 3.4 you mention 24 parameters, but shouldn’t it be 27?!
Answer: here the ”spatial parameters” refer to the division of the pixel barrel to smaller
units (because of differences of radiation dose due to different distance from the interaction
point). In this division, 3 cylindrical layers and 8 rings in each layer are used, and thus
3*8=24 parameters.

• 16) Why is radiation is a problem for the Lorentz angle?
Answer: Radiation creates defects in the silicon material, and this damage affects properties
of the drift of the charge carriers. Changes in the drift affect the strength of the Lorentz
force, and therefore also the Lorentz shift. Changes in the Lorentz shift, if not taken
properly into account, appear as misalignment of the sensor as a function of the radiation
dose. A reference for this: arXiv:physics/0204078 [physics.ins-det] .

• 17) The two first references miss their titles .
Answer: the JPCS instructions state that title is optional: ”titles of journal articles may also
be included (optional)”. I decided to leave these titles out since locating those two references
is easy. For your information, these titles are ”The CMS experiment at the CERN LHC”
and ”Alignment of the CMS silicon tracker during commissioning with cosmic rays”.

• 18) All of the names, like Lampén T miss the dot after T. Maybe this is something stupid
of the format?!
Answer: The JPCS instructions indeed state that ”Initials should not have full stops”. My
personal opinion is that this format looks weird, but the instructions are clear.

Best Regards, Tapio Lampén
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Abstract. The CMS all-silicon tracker consists of 16 588 modules, embedded in a solenoidal
magnet providing a field of B = 3.8 T. The targeted performance requires that the software
alignment tools determine the module positions with a precision of a few micrometers. Ultimate
local precision is reached by the determination of sensor curvatures, challenging the algorithms
to determine about 200 000 parameters simultaneously. The main remaining challenge for
alignment are the global distortions that systematically bias the track parameters and thus
physics measurements. They are controlled by adding further information into the alignment
work-flow, e.g. the mass of decaying resonances or track data taken with B = 0 T. To make use
of the latter and also to integrate the determination of the Lorentz angle into the alignment
procedure, the alignment framework has been extended to treat position sensitive calibration
parameters. This is relevant since due to the increased LHC luminosity in 2012, the Lorentz
angle exhibits time dependence. Cooling failures and ramping of the magnet can induce
movements of large detector sub-structures. These movements are now detected in the CMS
prompt calibration loop to make the corrections available for the reconstruction of the data
for physics analysis. The geometries are finally carefully validated. The monitored quantities
include the basic track quantities for tracks from both collisions and cosmic ray muons and
physics observables.

1. Introduction
The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting
solenoid of 6 m internal diameter. Within the superconducting solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a
brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors
embedded in the steel return yoke outside the solenoid. Extensive forward calorimetry
complements the coverage provided by the barrel and endcap detectors.

CMS uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x axis pointing to the centre of the LHC, the y axis pointing up (perpendicular to the LHC
plane), and the z axis along the anticlockwise-beam direction. The polar angle θ is measured
from the positive z axis and the azimuthal angle φ is measured in the x-y plane. Muons
are measured in the pseudorapidity range |η| < 2.4, with detection planes made using three
technologies: drift tubes, cathode strip chambers, and resistive plate chambers. Matching muons
to tracks measured in the silicon tracker results in a transverse momentum resolution between
1 and 5%, for pT values up to 1 TeV.

The inner tracker measures charged particles within the pseudorapidity range |η| < 2.5. It
consists of 1 440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T



field of the superconducting solenoid. It provides an impact parameter resolution of ∼15µm
and a transverse momentum pT resolution of about 1.5% for 100 GeV particles.

The CMS apparatus has an overall length of 22 m, a diameter of 15 m, and weighs 14 000 t.
A more detailed description can be found in [1].

To fully exploit the single hit resolution of 9µm for pixel and of 23–60µm for strip sensors,
the positions of the sensors must be known to a precision of a few micrometers. This can be best
achieved with track-based alignment algorithms. For the CMS tracker these have been applied
using tracks from cosmic ray events [2], adding tracks from first LHC collisions [3], and from
data taking periods of 2010–2012 [4, 5]. The alignment process has improved during the years,
and new features have been added.

The track-based alignment algorithms aim to minimize the χ2 function, in which the sum
of squares of track-hit residuals is collected over a large number of tracks and sensors. The
minimization is carried out with respect to selected degrees of freedom (DoF) of each sensor
corresponding to its translation, rotation and shape [5]. However, for those sensors which are
sensitive only in one coordinate, it is not meaningful to use all these DoFs.

Details of the minimization process can be found in [6, 7] and [8] for the Millepede II and
H.I.P. approaches, both used in CMS.

This article gives an overview of the track-based alignment process of the CMS silicon tracker
and presents the main improvements and results in 2012, followed by a summary.

2. Alignment in CMS in 2012
The full-scale alignment of the CMS silicon tracker consists of alignment of all individual
sensors for all their reasonable degrees of freedom (DoF)1: 9 DoFs for pixel modules and
8 DoFs for strip sensors (sensitive only in one coordinate). In addition, larger groups of
sensors corresponding to physical structures of CMS can be aligned for 9 DoFs. Redundant
DoFs are avoided with use of hierarchy constraints [2]. This allows good control for time-
dependent effects, which typically influence structures larger than individual sensors, for which
the alignment compared to nearby sensors is rather stable in time. Therefore, when full-
scale alignment parameters are defined with a large dataset, the alignment parameters of large
structures can be allowed to vary with time.

The alignment of high-level structures is an approach in which frames of modules, layers
or even subdetectors (such as the pixel detector) are aligned instead of their components. This
approach requires less tracks and is faster to carry out, and is fully sufficient, when a full-scale
alignment has previously been carried out, and when there is no reason to suspect deterioration
in the sensor-level alignment parameters.

In 2012, new alignments were applied twice in the prompt reconstruction. First, at the
beginning of the year, a high-level structure alignment was performed with cosmic ray muon
data recorded while there were no collisions provided by the LHC. Later a high-level structure
alignment was again carried out together with a pixel module-level alignment taking into account
an update in the Lorentz angle calibrations.

In the re-reconstruction of the 2012 data, new alignment parameters were used three times.
The main motivation was improvements achieved in the Lorentz angle calibrations.

3. Improvements in Alignment in 2012
Important improvements in the alignment process have been introduced during the past years,
especially starting from 2010 and 2011 when abundant amount of high-quality tracks with high
momentum became available.

1 The possible degrees of freedom for alignment are three translational DoFs, three rotational DoFs, and three
DoFs corresponding to Legendre polynomials parametrising the deviations from an ideal plane [5].



The following improvements [5] were introduced in 2011, and were thus ready to be used in
the data taking of 2012:

• parametrization of sensor shapes;

• consideration of effects of multiple scattering in the track model used in determination of
alignment parameters;

• for Z0 → µ+µ− events: use of the mass of the Z0 boson as a constraint (in the form of a
penalty function to the χ2 function), together with a vertex constraint enforcing the muons
to emerge from a common vertex (described in more detail in [5]); and

• monitoring of time dependence of large structures of the pixel detector.

3.1. Parametrization of sensor shapes
The possibility to model the shape of the sensors with second-order Legendre polynomials has
been introduced to the alignment process [5]. Also, the angles and offsets between two daisy-
chained sensors in the modules in the outer tracker can be corrected in the alignment.

During construction, the planarity tolerance for the strip sensors was 100µm [1]. This kind
of deviation would create a bias in the measurement direction u of the sensor, depending on the
angle ψ of the track with respect to the normal of the sensors as ∆u = ∆w ∗ tanψ, where ∆w
is the deviation from the ideal plane at the impact point. This is depicted in figure 1. With the
same equation, the ∆w and thus the shape can be scanned over the sensor surface.

The bias resulting from non-planar sensors is especially large for sensors of the innermost
layer of the pixel barrel. At the edge of the 66 mm wide modules, this bias can be of the order
of 100µm.

Figure 1. Illustration of a bias ∆u in
the measurement direction caused by
the non-planar shape of a sensor. The
sensor differs from the ideal plane by
∆w at the crossing point. The angle
between the track and the normal of
the ideal sensor surface is ψ. The bow
is largely exaggerated.

Figure 2. Sensor bow (∆w) as function of the
normalized measurement direction vr, where values
of ±1 correspond to the edges of the sensor.

When the sensor shape parameters are taken into account in hit reconstruction, the related
bias is practically corrected. This is illustrated in figure 2, which presents ∆w over the normalized



relative local track coordinate vr (corresponding to the global z direction) averaged over pixel
barrel sensors. The purple open circles (“Flat Modules”) correspond to a situation in which no
sensor shape parameters are applied, and average deviation of the order of 10–20µm can be seen.
The black filled circles (“Curved sensors”) correspond to the situation when these parameters
are used, and the deviations are below 5µm of absolute value.

3.2. Weak modes and mass constraints
Alignment with the minimization of the χ2 of track-hit residuals is an efficient way to correct for
the uncorrelated sensor misalignments and in this way to improve the precision of measurements
and physics variables. A more difficult type of misalignments are, however, those correlated
distortions, which do not affect or affect very little the χ2 function (the “weak modes”). A set
of nine basic weak modes and their implication on physics analyses is studied in [4].

Weak modes can be constrained in alignment by using tracks corresponding to multiple
topologies (collision tracks with vertices from a wide area, tracks from cosmic rays, etc.). In
addition, mass constraints for well-known resonances can be used. For instance, use of cosmic
ray tracks is an efficient way to constrain the telescope weak mode (∆z ∼ r), which creates
a bias in the measured η value of the track.

Figure 3. Illustration
of the Sagitta weak mode.
Individual sensors are not
shown, only the layers they
are attached to. In this
correlated distortion, layers
are shifted vertically (∆y)
by an amount proportional
to their radial coordinate r.

Figure 4. Relative misalignment ∆z of the two pixel half
barrels along the beam line ∆z as function of date in November-
December 2012. A 100µm movement appears on November
22nd, and is corrected with the PCL a week later.

In 2011, a variation of the Z0 mass as function of the φ angle of the positively charged muon
from Z0 → µ+µ− decays was observed. This φ-dependent curvature bias was suspected to
be caused by a sagitta weak mode, in which sensors are displaced as ∆y ∼ r, as shown in
figure 3. This systematic distortion can bias the track curvature, which is inversely proportional
to the transverse momentum: κ ∼ 1/pT. It was studied with Z0 → µ+µ− events, which can be
used to reveal this bias in the following way. The fitted2 invariant mass of Z0 is presented as

2 The invariant mass distribution is fitted with a wide fit in the range 75–105 GeV/c2 and the Z width is set to
the PDF value of 2.495 GeV/c2. In the fit, a Breit-Wigner function convoluted with a Crystal ball function is
used (it models finite track resolution and radiative tail) summed with an exponential background.



function of the muon direction, separating µ+ and µ−. A sinusoidal dependency can reveal the
existence of a sagitta weak mode. The result is shown in figure 5 with respect to the φ angle,
and in figure 6 with respect to the η angle 3. In 2012, the φ dependence of the curvature bias
has decreased as a result of applying substantial weights to the Z0 → µ+µ− events in alignment.

Figure 5. Reconstructed mass for
Z0 → µ+µ− decays as a function of φ of
the µ+. Results for 2011 data and alignment
are shown in red, and those for 2012 in black.

Figure 6. Reconstructed mass for
Z0 → µ+µ− decays as a function of η of
the µ+. Results with perfect alignment
and simulated events are shown with black
circles. Results with and without the mass-
constrained Z events used in alignment are
shown with blue squares and red triangles,
respectively, for data from 2011.

3.3. Prompt calibration loop
In CMS, the prompt calibration loop (PCL) is a data stream, in which some measured data is
immediately reconstructed for purposes of data quality monitoring, alignment and calibration.
With these data, the offline conditions database can be updated so that the actual physics
data stream from CMS can be reconstructed after a short, intentional delay with up-to-date
conditions.

At the end of 2012, the PCL was able to calculate 6 alignment parameters for the pixel half
barrels. It could provide feedback well within the time limit of 48 hours, after which data from
the same run was reconstructed and made available to physics analyses.

During the last month of proton-proton collisions of 2012, the PCL was running for monitoring
purposes, and thus not used in updating alignment parameters. A major relative movement of
the pixel half-shells along the z coordinate was detected on November 22nd. The PCL was
activated on November 30th to recover this movement, which later was diagnosed to be caused
by a cooling failure. These movements are shown in figure 4, which depicts with red crosses
the relative z-shift of the half-shells with the track-vertex residuals as a function of date. The
black diamonds refer to the situation when this movement has been corrected for later in re-
reconstruction.

3 This result does not illustrate CMS muon reconstruction and calibration performance. Additional momentum
calibration is applied in addition when necessary.



3.4. Lorentz angle calibration
A possibility to calibrate the Lorentz angle has also been implemented in the Millepede II
alignment procedure in 2012. As shown in figure 7, in presence of a magnetic field, the Lorentz
force deflects drifting signal charge by the Lorentz angle. This effect causes shift of the measured
hit positions in the local u direction by ∆u = tan(θLA) ∗ d/2, where θLA is the Lorentz angle,
and d is the width of the sensor.

To calibrate the Lorentz angle (LA), tracks recorded both with magnetic field on and off
are needed to disentangle LA effects from genuine misalignments. The full 2012 data with
60 million tracks were used: tracks of isolated muons, Z0 → µ+µ− events, cosmic ray muons (at
both 0 T and 3.8 T), low pT tracks and collision tracks recorded at 0 T. The Lorentz angle was
calibrated for the pixel detector with a granularity of 65 periods of time (of 2012). In addition,
24 spatial parameters were used: three corresponding to the cylindrical layers of the pixel barrel
surrounding the interaction point (at radii of 4.4, 7.3 and 10.2 cm [1]), and 8 corresponding
to rings in each layer (sensors on one layer with the same z coordinate). This leads to 1560
additional parameters for the alignment procedure.

The Lorentz angle development for all layers (on ring 4) of the pixel barrel is shown in figure 8
as function of integrated luminosity collected by CMS during 2012. The development for layers
1,2 and 3 are shown in figures 9, 10, and 11, respectively. The following observations can be
made:

• evolution of the Lorentz angle is consistent in all rings within each layer;

• there is a significant offset of the Lorentz angle values for negative and positive halves of
the pixel barrel along Z (rings 1–4 compared to rings 5–8);

• behaviour of the Lorentz angle seems to be different for different layers; it is however
suspected that this is caused by different radiation doses, and can follow the same behaviour
delayed with time; and

• the largest change of the Lorentz angle (layer 1, ring 4) through whole 2012 is equivalent
to the shift of the modules by up to 4µm.

The offset seen between Lorentz angles in rings 1–4 and 5–8 is suspected to be caused by
a difference in their grounding, which generates a difference in the bias voltage of the sensors.
This hypothesis will be verified when data taking restarts.

In 2012, the effect caused by the time-dependent changes of the Lorentz angle is only of the
size of a few µm, but this issue will certainly be relevant in 2015, when increased LHC luminosity
and the intense radiation will generate time-dependency in the Lorentz angle calibration.

Figure 7. Illustration of the
Lorentz angle. Due to the magnetic
field, charge carriers in the silicon
drift to the direction indicated by
orange lines, with an angle with
the electric field lines called the
Lorentz angle. As a result, the
cluster barycentre is reconstructed
in a biased position, unless the
Lorentz effect is properly accounted
for.



Figure 8. Evolution of the Lorentz angle in
2012 for innermost sensors (ring 4) of all three
pixel barrel layers.

Figure 9. Evolution of the Lorentz angle in
2012 for 8 rings of layer 1 of the pixel barrel.

Figure 10. Evolution of the Lorentz angle in
2012 for 8 rings of layer 2 of the pixel barrel.

Figure 11. Evolution of the Lorentz angle in
2012 for 8 rings of layer 3 of the pixel barrel.

4. Summary
Alignment of the CMS silicon tracker has been routinely performed with the Millepede II
algorithm calibrating 200 000 alignment parameters. The alignment work-flow provides quick
response to data taking with a run-by-run alignment of large structures. The improvements
in 2012 consist of: calibration of sensor shape parameters, alignment calibration operational
in the prompt calibration loop, reduction of amplitude of the φ dependent curvature bias with
specially treated and weighted Z0 → µ+µ− events, the alignment framework extended to treat
also calibration parameters, and Lorentz angle calibration integrated into alignment.

Most of these improvements were in full use already in 2012. When LHC operation begins



again in 2015, these improvements will be needed to handle the challenges of the new regime of
high luminosity, where for instance time-dependent changes of the Lorentz angle can be expected.
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