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Abstract. Next-to-leading order electroweak and QCD radiative corrections to the Drell–Yan
process with high dimuon masses for experiments CMS LHC at CERN have been studied in fully
differential form. The FORTRAN code READY for numerical analysis of Drell–Yan observables
has been presented. The radiative corrections are found to become significant for CMS LHC
experiment setup.

1. Introduction

For more than twenty years the Standard Model (SM) has had the status of a consistent and
experimentally confirmed theory since the experimental data of past and present accelerators
(LEP, SLC, Tevatron) has shown no significant deviation from SM predictions up to the energy
scale of a few hundred GeV and, finally, LHC has discovered Higgs boson [1]. However, various
New Physics (NP) models such as production of high-mass dilepton resonances [2], extra spatial
dimensions [3] etc. suggest deviations beyond SM predictions and testing them at the new
energy scale (the few thousand GeV region) is one of the main tasks of modern physics. The
forthcoming experiments at the LHC with maximal energy would either provide the first data
on NP or strengthen the current status of the SM.

The experimental investigation of the continuum for the Drell-Yan production of dileptons,
i.e. data on the cross section and the forward-backward asymmetry of the reaction

pp→ (γ,Z) → l+l−X (1)

at large invariant mass of a dilepton pair (see [4] and references therein) is considered to be one
of the most powerful tools in the experiments at the LHC from a NP exploration standpoint.

The studies of the NP effects are impossible without exact knowledge of the SM predictions
including higher-order electroweak (EWK) and QCD radiative corrections. Many programs
have been developed for this: DYNNLO, FEWZ, HORACE, MC@NLO, POWHEG, RADY,
READY, SANC, ZGRAD/ZGRAD2 et al. A large list of references quoted, for example, in
recent papers [5, 6] dedicated to description of FEWZ and POWHEG, correspondingly. These
codes were used for taking into account the uncertainty due to the EWK and QCD corrections
at recent measurements of the differential dσ/dM (M is dilepton invariant mass) and double-
differential d2σ/(dMdy) (y is dilepton rapidity) Drell–Yan cross sections at LHC energy
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Figure 1. Feynman graphs for the Born (a), one-loop virtual diagrams (b-h), and
bremsstrahlung diagrams for the Initial (ISR) (i, j) and Final State Radiation (FSR) (k, l).
The unlabeled wavy lines stand for the virtual γ or Z boson.

7 TeV, M ≤ 1.5 TeV and integrated luminosity 4.5 fb−1 [7]. Measurements are in agreement
with the SM predictions: all of them with next-to-next-to-leading order (NNLO) of FEWZ using
MSTW2008 parton density functions (PDF) and double-differential observables with NLO of
POWHEG using CT10 PDF.

At the edges of kinematical region (especially at extra large M) the important task is to make
the correction procedure of background both accurate and fast. For the latter it is desirable to
obtain the set of as much compact as possible formulas both for EWK and QCD corrections. To
get leading effect of weak corrections in the region of large invariant dilepton mass we actively
used the so-called Sudakov logarithms (SL) [8] which grow with the energy scale and thus give
one of the main effects in the region of large invariant dilepton mass. In addition, the collinear
logarithms (CL) of the QED and QCD radiative corrections can compete with double SL in
the investigated region. Such formulas have been obtained in previous papers [9]–[14] using the
asymptotic approach for the most complicated weak components of EWK corrections, and using
the leading CL extraction [12, 13, 14] for the QED and QCD component. This paper is devoted
to the analysis of the interplay of these effects for observable quantities of CMS LHC in general
fully differential form.

2. Notations and cross sections with the Born kinematics

At LO the Drell–Yan process p(PA) + p(PB) → l+(k1) + l−(k2) + X in quark-parton model is
described by Fig.1,a. Our notations are the following: p1(p2) is the 4-momentum of the quark
or antiquark with flavor q and mass mq from the incoming proton with 4-momentum PA or
PB ; k1(k2) is the 4-momentum of the final lepton l+(l−) with mass m; q = k1 + k2 is the
4-momentum of the i-boson with mass mi (i = γ,Z; mγ = 0). We use the standard set of
Mandelstam invariants for the partonic elastic scattering:

s = (p1 + p2)
2, t = (p1 − k1)

2, u = (k1 − p2)
2, (2)

and S = (PA + PB)2 for hadron scattering. The invariant mass of the dilepton is M =
√

q2.
Let us start by presenting the convolution formula for the total cross section with non-

radiative kinematics:

σN =
1

3

1
∫

0

dx1

1
∫

0

dx2

0
∫

−S

dt
∑

q=u,d,...

[

fA
q (x1, Q

2)fB
q̄ (x2, Q

2)σqq̄
N (t) +

+fA
q̄ (x1, Q

2)fB
q (x2, Q

2)σq̄q
N (t)

]

θ(s+ t)θMθD. (3)



Here, fH
q (x,Q2)dx is the probability of finding, in hadron H, a quark q at energy scale Q2

carrying a momentum fraction between x and x+ dx, and σqq̄ and σq̄q are the cross sections at
the quark-parton level. According to the quark-parton model rules, we take s = x1x2S. The
function θM = θ(s−M2

1 )θ(M2
2 −s) under the integral sign is determined by the kinematics of the

parton reaction and provides the integration in the interval of invariant mass M1 ≤ M ≤ M2.
The factor

θD = θ(ζ∗ − ζ)θ(ζ∗ + ζ)θ(ζ∗ − ψ)θ(ζ∗ + ψ)θ(pT (l+) − pmin
T )θ(pT (l−) − pmin

T ) (4)

cuts the region of integration according to detector geometry. Here, ζ = cos θ1, ψ = cos θ2,
where θ1(2) is the scattering angle of the lepton with 4-momenta k1(2) in the hadron center-
of-mass frame. For the CMS detector the parameter ζ∗ ≈ 0.986614 corresponds to the lepton
rapidity limitation y(l)∗ = 2.5. For the transverse components of lepton momenta we have the
relations pT (l+) = k10 sin θ1 and pT (l−) = k20 sin θ2, and, for the CMS detector, pmin

T = 20 GeV.
We use the common index for contributions with non-radiative kinematics N = {0, V, soft},

where 0 stands for the Born contribution, the special indices for contributions with at least
one additional virtual particle V = {BSE,HV, b} and separately for the contributions of boxes
b = {γγ, γZ,ZZ,WW}. Abbreviations mean: BSE for boson self energies, HV for Heavy
Vertices induced by at least one massive boson, ”γγ” for the infrared(IR)-finite part of γγ-
boxes, ”γZ” for the IR-finite part of γZ-boxes and ”ZZ” for the ZZ-boxes, ”WW” for the
WW -boxes, ”soft” for the sum of Light Vertices (LV) induced by one massless photon or gluon,
the IR-divergent parts of the γγ-boxes, γZ-boxes, and of the (soft) bremsstrahlung cross section.
The ”soft”-part is IR-finite in sum and described by Born kinematics.

Now, let us present explicit formulae for qq̄ cross sections given in (3), employing the notation
σ(t) ≡ dσ/dt. To find the cross section for the q̄q-case, we can use crossing rules. The Born
cross section has the form

σqq̄
0 (t) =

2πα2

s2

∑

i,j=γ,Z

DiDj∗ ∑

χ=+,−
λq

i,j
χ λl

i,j
χ Bχ, (5)

where the boson propagators look like Dj = (s−m2
j + imjΓj)

−1, Γj is the j-boson width,

Bχ = t2 +χu2. The combinations of coupling constants for a f -fermion with an i- (or j-) boson
have the form

λf
i,j
+ = vi

fv
j
f + ai

fa
j
f , λf

i,j
− = vi

fa
j
f + ai

fv
j
f , (6)

where

vγ
f = −Qf , a

γ
f = 0, vZ

f =
I3
f − 2s2WQf

2sW cW
, aZ

f =
I3
f

2sW cW
, (7)

Qf is the electric charge of fermion f in proton charge units e, (e =
√

4πα), I3
f is the third

component of the weak isospin of fermion f , and sW (cW ) is the sine(cosine) of the weak mixing
angle.

The BSE-part is

σqq̄
BSE(t) = −4α2π

s2

[

∑

i,j=γ,Z

Πi
SD

iDj∗ ∑

χ=+,−
λq

i,j
χ λl

i,j
χ Bχ +

+ΠγZ
S DZ

∑

i=γ,Z

Dj∗ ∑

χ=+,−
(λq

γ,j
χ λl

Z,j
χ + λq

Z,j
χ λl

γ,j
χ )Bχ

]

. (8)

Here Πγ,Z,γZ
S are connected with the renormalized photon–, Z– and γZ–self energies [15, 16] as

Πγ
S =

Σ̂γ

s
, ΠZ

S =
Σ̂Z

s−m2
Z

, ΠγZ
S =

Σ̂γZ

s
.



The HV-part has the following form:

σqq̄
HV(t) =

4πα2

s2
Re

∑

i,j=γ,Z

DiDj∗ ∑

χ=+,−
(λF

q
i,j

χ
λl

i,j
χ + λq

i,j
χ λF

l
i,j
χ )Bχ, (9)

where the form factors λF
f

i,j

± are given in [9]. The boxes can be presented as

σqq̄
b (t) =

2α3

s2

∑

k=γ,Z

Dk∗[δb,k(t, u, b+, b−) − δb,k(u, t, b−, b+)], (10)

where the functions δb,k(t, u, b+, b−), bχ and all prescriptions for them can be found in [9, 10].
The QED ”soft”-part (the result of infrared singularity cancellation of γγ, γZ, photon LV

and soft photon bremsstrahlung) is proportional to Born cross section:

σqq̄
soft(t) =

α

π
δqq̄
softσ

qq̄
0 (t) (11)

with corresponfing factor

δqq̄
soft = 2 ln

2ω√
s

[

Q2
q(ln

s

m2
q

− 1) − 2QqQl ln
t

u
+Q2

l (ln
s

m2
− 1)

]

+Q2
q

(3

2
ln

s

m2
q

− 2 +
π2

3

)

−

−QqQl

(

ln
s2

tu
ln
t

u
+
π2

3
+ ln2 t

u
+ 4 Li2

−t
u

)

+Q2
l

(3

2
ln

s

m2
− 2 +

π2

3

)

, (12)

where ω is a parameter that determines the ”softness” of a photon – the maximal energy of a
soft photon, and Li2 denotes the Spence dilogarithm. The QCD ”soft”-part can be found from
(12) by neglecting the FSR and interference parts and after substitution:

CQED = Q2
q

α

π
→

N2−1
∑

a=1

tata
αs

π
=
N2 − 1

2N
I
αs

π
→ 4

3

αs

π
= CQCD, (13)

where N = 3, and 2ta are Gell-Mann matrices.

3. Hard photons and gluons. Inverse gluon emission

Let us present the Drell–Yan cross section contribution induced by bremsstrahlung (Fig.1(i-l)).
We introduce the total phase space of the reaction p(PA) + p(PB) → l+(k1) + l−(k2) + b(k) +
X, (b = γ or g) as

IΩ[A] =

1
∫

0

dx1

1
∫

0

dx2

∫∫

Ω

∫∫

dtdvdzdu1
1

π
√

Ru1

θ(Ru1
)θR

Mθ
R
D A, (14)

where z = 2k1k, v = 2k2k, z1 = 2p1k, u1 = 2p2k (for radiative kinematics v = s + t + u and
z + v = z1 + u1) and k is the 4-momentum of a real bremsstrahlung photon (gluon).

The factor θR
M for the radiative case has the form

θR
M = θ(s− z − v −M2

1 )θ(M2
2 − s+ z + v). (15)



For θR
D, we use the ”non-radiative” expression θD (4) with the angles and energies depending on

additional ”radiative” invariants:

ζ =
x1u− x2t

x1u+ x2t
, ψ =

x1(s+ u− u1) + x2(u+ z1 − v)

x1(s+ u− u1) − x2(u+ z1 − v)
, (16)

k10 = − 1

2
√
S

( t

x1
+

u

x2

)

, k20 =
1

2
√
S

(s+ t− z1
x1

+
s+ u− u1

x2

)

. (17)

The physical region Ω is determined by θ(Ru1
), where −Ru1

is the Gram determinant, which
has the form

Ru1
= −Au1

u2
1 − 2Bu1

u1 −Cu1
, Au1

= −4m2s+ (s− v)2,

Bu1
= v[m2(3s− v) + (s− v)(m2

q − s− t+ v)] + z[m2(s− v) −m2
q(s+ v) + st+ v(s + t− v)],

Cu1
= z2[(m4 +m4

q − 2m2(m2
q + t− v) − 2m2

q(t+ v) + (t− v)2] +

+ 2zv[m4 +m4
q +m2

q(s− 2t) −m2(2m2
q + s+ 2t− 2v) + (t− v)(s + t− v)] +

+ v2[m4 − 2m2(m2
q + s+ t− v) + (m2

q − s− t+ v)2]. (18)

Then the total bremsstrahlung cross section has the form

σR =
α3

3
IΩ[T ], T =

1

s2

∑

χ=+,−

∑

q=u,d,...

∑

i,j=γ,Z

λq
i,j
χ λl

i,j
χ ×

(

[fA
q (x1, Q

2)fB
q̄ (x2, Q

2) + χfA
q̄ (x1, Q

2)fB
q (x2, Q

2)][Q2
qRqk

qq̄
χ ΠiΠj∗ +Q2

lRl
qq̄
χ D

iDj∗]

+[fA
q (x1, Q

2)fB
q̄ (x2, Q

2) − χfA
q̄ (x1, Q

2)fB
q (x2, Q

2)]QlQqRint
qq̄
χ

ΠiDj∗ +DiΠj∗

2

)

. (19)

Subscripts at R (they can be found in Appendix A of [11]) indicate the origin of the emitted
particle: qk – quark for ISR both for photon and gluon [taking into account (13)], l and int –
lepton and interference term only for photon, respectively. The boson propagators corresponding
to the radiative case look like

Πj =
1

s− z − v −m2
j + imjΓj

. (20)

We use the standard (noncovariant) method of IR singularity separation dissecting the region
of integration with the help of the function θω = θ(v+z

2
√

s
− ω) and dividing the cross section (19)

into two parts: the first one corresponds to soft photons (gluons) with energy less then ω (it
goes to IR singularity cancellation in formula (12) ) and the second one corresponds to hard
ones with energy larger than ω.

To finalize the calculation we have to take into consideration the inverse gluon emission (see,
Fig. 2). Methods of calculation are similar to cited above nonsinglet-channel (according to the
QCD terminology) qq̄-contributions. All formulas for cross sections and kinematics can be found
in [14].



Figure 2. Feynman graphs of gq-type (a, b) and qg-type (c, d) for inverse gluon bremsstrahlung.
The unlabeled wavy lines stand for the virtual γ or Z boson.

4. Fully differential cross section

Here we rebuild all of the cross sections to fully differential form

σC → σ
(3)
C ≡ d3σC

dMdydψ
, (21)

where y is the dilepton rapidity y ≡ y(l+l−), σ
(3)
C are the corresponding contributions (or sum

of contributions) of the differential cross section, for example, if C = 0, σ
(3)
0 is the differential

Born cross section and so on.
For the part of the cross section with non-radiated kinematics, the translation to differential

form is easy to do using the Jacobian JN :

dx1dx2dt = JNdMdydψ, JN =
4M3e2y

S[1 + ψ + (1 − ψ)e2y ]2
. (22)

Then we get the following correlations:

t = − M2(ψ + 1)

1 + ψ + (1 − ψ)e2y
, x1 = ey

M√
S
, x2 = e−y M√

S
, (23)

and the differential cross section with non-radiative kinematics looks like

σ
(3)
N =

1

3
JN

∑

q=u,d,...

[fA
q (x1, Q

2)fB
q̄ (x2, Q

2)σqq̄
N (t) + fA

q̄ (x1, Q
2)fB

q (x2, Q
2)σq̄q

N (t)]θD. (24)

For the radiative case, we rebuild the cross section to fully differential form in a way analogical
to the non-radiative case:

dx1dx2dt = J
(3)
R dMdydψ, (25)

where we use the correlations

t =
(u1 +M2)(e2y(ψ − 1)(v − u1) + (1 + ψ)(z1 +M2))

e2y(ψ − 1)(u1 +M2) − (1 + ψ)(z1 +M2)
, (26)

x1 =
ey
√

(u1 +M2)(v + z +M2)√
S
√
z1 +M2

, x2 =
e−y

√

(z1 +M2)(v + z +M2)√
S
√
u1 +M2

. (27)

These are obtained from: 1) the formula for the radiative s: s = M2 + v+ z, 2) the formula for
the radiative ψ (16), 3) the definition of dilepton rapidity y: e2y = (x1/x2)(z1 +M2)/(u1 +M2).
Then, the Jacobian in radiative case can be expressed as

J
(3)
R =

4Me2y

S

(v +M2)(z1 +M2)(u1 +M2)

[(1 + ψ)(z1 +M2) + (1 − ψ)e2y(u1 +M2)]2
, (28)



and satisfies limk→0 J
(3)
R = JN . The differential cross section corresponding hard bremsstralung

is now given by

σ
(3)
R =

α3

3

∫∫∫

1

π
√

Ru1

θR
DTθωJ

(3)
R dvdzdu1. (29)

The remaining triple integral over the physical bremsstrahlung region
∫∫∫

...dvdzdu1 has to be
computed numerically due to the complexity of the integration region and form of the integrand,
and due to the presence in the integrand of the intricate PDF, which are z, u1-dependent (see
(27)). We can realize this numerical integration by Monte Carlo routine based on the VEGAS
algorithm [18], or simplify the hard bremsstrahlung contribution extracting the leading logarithm
part and integrating

∫∫

...dzdu1 analytically. For further estimations we choose the last option.
Exact formulas for QED CL parts can be found in [12], results for nonsinglet QCD and singlet
IGE CL parts can be found in [13] and [14], respectively.

At last, starting with the fully differential cross sections, we can construct the distributions
over y and (or) M :

dσC

dMdy
=

ζ∗
∫

−ζ∗

dψσ
(3)
C θD;

dσC

dM
=

ζ∗
∫

−ζ∗

dψ

y+
∫

y−

dy σ
(3)
C θD, y± = ± ln

√
S

M
. (30)

5. Independence from unphysical parameters

The proof of independence of the results from the parameter ω is rather simple and can be done
numerically or analytically (see, for example, [11, 12]). For the soft-hard photon separator we
use ω = 0.1 GeV; however the results presented below do not depend on ω in a wide interval:
1 GeV ≤ ω ≤ 0.0001 GeV.

In order to solve the problem of quark mass singularity (QS), we used the MS scheme [19], as
in paper [20]. After all of the prescribed manipulations, the part of the cross section that must
be subtracted in order to avoid the dependence on the quark mass assumes the form

σQED(QCD),QS =
1

3

1
∫

0

dx1

1
∫

0

dx2

0
∫

−S

dt

1−2ω/M
∫

0

dη
∑

q=u,d,...

[ (

q(x1)∆q̄(x2, η) +

+∆q(x1, η)q̄(x2)
)

σqq̄
0 (t) + (q ↔ q̄)

]

θ(s+ t)θMθD, (31)

∆q(x, η) =
1

2
CQED(QCD)

[

1

η
q(
x

η
,M2

sc)θ(η − x) − q(x,M2
sc)

]

1 + η2

1 − η

(

ln
M2

sc

m2
q

− 2 ln(1 − η) − 1

)

,(32)

where q(x) ≡ fq(x,Q
2), and Msc is the factorization scale [19], which should be equal to Q

[12]. For the quark masses we used mq = mu, although our numerical results practically do
not depend on mq within the interval 0.01mu ≤ mq ≤ 10mu. For IGE the result of QS-term
substraction is trivial:

σ
(3)
IGE − σ

(3)
IGE,QS = σ

(3)
IGE(mq →Msc).

6. Discussion of numerical results

We investigate the scale of EWK and QCD corrections and their effect on the differential
observables of the Drell-Yan processes for CMS experiment using the FORTRAN program
READY (Radiative corrEctions to lArge invariant mass Drell-Yan process) with the following
set of parameters and prescriptions:



• SM input electroweak parameters: α = 1/137.035999679, mW = 80.398 GeV, mZ =
91.1876 GeV, ΓW = 2.141 GeV, ΓZ = 2.4952 GeV, mH = 125.7 GeV;

• muon mass mµ = 0.105658367 GeV, masses of the other fermions for loop contributions to
the BSE: me = 0.51099891 keV, mτ = 1.77699 GeV, mu = 0.06983 GeV, mc = 1.2 GeV,
mt = 174 GeV, md = 0.06984 GeV, ms = 0.15 GeV, mb = 4.6 GeV; (the light quark masses

provide ∆α
(5)
had(m

2
Z)=0.0276);

• modern MSTW2008 set of PDF [21] with the choice Q = M ;

• taking into account 5 flavors of valence and sea quarks in the proton (with the exception of
the t flavor) and set their masses as regulators of the collinear singularity to mq = mu;

• using ”bare” setup for leptons identification requirements (no smearing, no recombination
of lepton and photon).

In Table 1 as example of READY output we show the relative corrections (RC) to Born
differential cross section

δC = σ
(3)
C /σ

(3)
0 (33)

via different y, ψ and M with the muons in the final state (l = µ), and the energy
√
S = 14 TeV

planned at the LHC in 2015.

Table 1. Relative corrections δNLO via different y, ψ and M .

y ψ δNLO at M=1 TeV δNLO at M=3 TeV δNLO at M=5 TeV
0.0 −0.8 −0.035 + 0.320 − 0.134 −0.191 + 0.442 − 0.068 −0.329 + 0.625 − 0.054
0.0 −0.4 −0.043 + 0.320 − 0.089 −0.171 + 0.442 − 0.061 −0.264 + 0.625 − 0.051
0.0 0.0 −0.036 + 0.320 − 0.073 −0.154 + 0.442 − 0.059 −0.231 + 0.625 − 0.051
0.0 0.4 −0.043 + 0.320 − 0.089 −0.171 + 0.442 − 0.061 −0.264 + 0.625 − 0.051
0.0 0.8 −0.035 + 0.320 − 0.134 −0.191 + 0.442 − 0.068 −0.329 + 0.625 − 0.054
0.6 −0.8 0.008 + 0.456− 0.267 −0.146 + 0.582 − 0.145 −0.101 + 0.770 − 0.163
0.6 −0.4 −0.014 + 0.453 − 0.196 −0.138 + 0.577 − 0.114 −0.114 + 0.773 − 0.123
0.6 0.0 −0.024 + 0.453 − 0.140 −0.128 + 0.569 − 0.090 −0.142 + 0.767 − 0.090
0.6 0.4 −0.028 + 0.443 − 0.078 −0.145 + 0.565 − 0.064 −0.223 + 0.759 − 0.061
0.6 0.8 −0.052 + 0.429 − 0.059 −0.207 + 0.555 − 0.052 −0.335 + 0.754 − 0.049
1.2 0.0 0.003 + 0.595− 0.295 −0.015 + 0.849 − 0.215
1.2 0.4 0.009 + 0.596− 0.205 −0.045 + 0.850 − 0.147
1.2 0.8 −0.024 + 0.577 − 0.047 −0.183 + 0.850 − 0.056

Numbers presented in 3rd, 4th and 5th columns correspond to sum of all NLO contributions:
NLO = EWK+QCD(qq̄)+QCD(qg). Results for all RCs strongly depend on kinematical
position, the necessary symmetry for different contributions is conserved. Using different PDFs
(CTEQ6, MRST2004, MSTW2008) we did not mark any significant effect for RCs in the whole
kinematical region of CMS.

Let us now compare, as example, our EWK results with the numbers of several leading world
groups HORACE, SANC and ZGRAD presented in [22]. All parameters and detector conditions
here are taken to be the same as in [22]. Our results for the relative correction to dσ/dM at
the point M = 1 TeV (l = µ,

√
S=14 TeV) is different by ∼ 1.5% comparing with HORACE

and SANC. At M = 2 TeV, this difference is ∼ 0.5%. The numbers of the ZGRAD group in
the region 0.9 TeV ≤ M ≤ 1.8 TeV are larger and are in better agreement with ours. We find
such agreement to be satisfactory, because, for the weak component of corrections, we use the
asymptotic approach [10], which greatly simplifies the formulas and accelerates the calculation,
but only works well in the region M > 0.5 TeV, this explains why the agreement becomes better
with increasing M .



7. Conclusions

The complete NLO EWK and QCD radiative corrections to the Drell-Yan process at large
invariant dilepton mass is studied in fully differential form. The results for weak, QED, QCD
parts are the compact expressions, they expand in Sudakov and collinear logarithms. Using
the FORTRAN code READY, the numerical analysis is performed in the high-energy region
corresponding to the CMS experiment at the CERN LHC. Both EWK and QCD RCs are found
to become large at high dilepton mass M and to have the same order of magnitude as the
systematic uncertainty expected on CMS [23]. Such large scale of RC does not allow neglecting
the radiative correction procedure in the future experiments on the Drell-Yan process with high
dimuon masses at CMS LHC. The exact NNLO QCD and O(ααs) (see, for example [24], where
one of first understanding of role of such effects at high energies had been achieved) corrections
would be desirable for a better control of theory vs. experiment.
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