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Abstract. In this talk the methods and computer tools which were used in our recent
calculation of the three-loop Standard Model renormalization group coefficients are discussed.
A brief review of the techniques based on special features of dimensional regularization and
minimal subtraction schemes is given. Our treatment of γ5 is presented in some details. In
addition, for a reasonable set of initial parameters the numerical estimates of the obtained
three-loop contributions are presented.

The renormalization group (RG) proves to be a useful and powerful tool in studying high-
energy behavior of the Standard Model. Before the discovery of the Higgs boson RG equations
(RGE) were used, among other things, to bound the value of the Higgs self-coupling. However,
the bounds significantly depend on the scale at which one expects the appearance of New
Physics. The observation of the Higgs boson in 2012 [1, 2] in some sense finalizes the SM since
the information about the values of all SM couplings become available from experiments.

Due to this fact, the interest to RG studies of the Standard Model arises again, but at a new
level of precision. One- and two-loop results for SM beta-functions have been known for quite a
long time [3] and are summarized in Ref. [4].

The first paper with full three-loop calculation of gauge coupling beta-functions within the
SM was published in Ref. [5]. The next step was carried out by another group from Karlsruhe [6],
which considered, in the specific limit, the three-loop beta-functions for the top quark Yukawa
coupling, the Higgs self-coupling and mass parameter. At this state of things our group entered
the game. We not only confirmed the results of Refs. [5, 6, 7] but also provided the three-loop
expressions for beta-functions of all the Yukawa couplings [8] corresponding to the fermions of
third generation. Contrary to K. Chetyrkin and M. Zoller [6], we include the dependence on
electroweak couplings.

In the beginning of 2013 our group started the calculation of missing three-loop terms in
beta-functions of the Higgs potential parameters. It turns out that the same problem was
considered by the authors from Karlsruhe. Unfortunately to us, they managed to obtain
and make their results [9] public a week earlier than our group [10]. Nevertheless, in such a
complicated calculation it is important to have a confirmation from an independent source. In
what follows, we are going to discuss the peculiarities of the procedure used to obtain the results
published by our group in a series of papers [8, 10, 11].

First of all, let us mention that the calculation of the three-loop SM beta-functions requires



evaluation of millions of Feynman diagrams. This task definitely requires automatization by
means of a computer. Fortunately, all necessary tools were available on the market, so we only
needed to combine them in a proper way.

It is due to nice features of dimensional regularization and minimal subtraction scheme one
can significantly simplify the calculation. Since in the MS-scheme all renormalization constants
can be extracted from the ultraviolet (UV) divergent parts of the corresponding Green functions,
one can modify infra-red (IR) structure of the model to simplify the calculation of counter-
terms. This is the essence of the so-called infrared-rearrangement (IRR) trick, which was
originally proposed by A.A Vladimirov[12]. This kind of modifications can lead to a spurious IR
divergences which should be removed consistently by the so-called R∗ operation [13]. However,
in many practical cases one can avoid this kind of complications. In our series of paper we made
use of two variants of (naive) IRR procedure.

For the calculation of gauge and Yukawa coupling beta-functions it is possible to convert
all required two- and three- point Green functions to the massless propagator-type Feynman
integrals. It is done via neglecting all internal masses and setting the Higgs boson external
momenta entering Yukawa vertex to zero. The evaluation of massless three-loop propagators is
performed via a FORM [14] package MINCER [15]. This kind of manipulations does not introduce
spurious IR divergences. Moreover, since we are interesting only in UV counter-terms it is
possible to work from the very beginning within the “unbroken phase“ of the SM, in which all
fields are massless and the Higgs doublet Φ does not have a vacuum expectation value.

The second approach to IRR, which was used in calculation of Higgs potential parameter
beta-functions, is the introduction of an auxiliary mass parameter M in every propagator via
iterative application of the following formula [16, 17]

1

(q − p)2
=

1

q2 −M2
+

2qp− p2 −M2

q2 −M2
× 1

(q − p)2
(1)

where q and p are linear combinations of internal and external momenta, respectively. It is clear
that if one applies this kind of decomposition a sufficient number of times the last term can be
neglected in the calculation of UV divergences (after subtraction of subdivergences). It turns
out that for the scalar four-point Green functions considered only the first term in Eq. (1) is
necessary. Consequently, we are left with massive vacuum integrals, which can be calculated by
either public MATAD package [18] or private BAMBA code written by V. Velizhanin. In such an
approach no spurious IR divergences appear so it can be used in the situations when a naive
application of the first variant of IRR fails. However, the price to pay for this advantage is the
necessity of explicit calculation of diagrams with counter-term insertions. This is due to the fact
that one needs to introduce counter-terms for divergences contributing to the auxiliary masses
for vector and scalar bosons. For further details see Ref. [16].

It is worth mentioning that we can still exploit the symmetries of the unbroken SM. For
example, all components of the Higgs boson doublet should have the same auxiliary mass
counter-term. The same is true for the SU(2) gauge bosons.

Moreover, as it is stated in Ref. [17], the auxiliary mass appearing in the numerator in RHS
of Eq. (1) can be safely neglected since it can only contribute to the unphysical mass counter-
terms. In addition, one can also skip Feynman diagrams with vacuum subdiagrams. In spite of
the fact that these subdiagrams are non-zero when the auxiliary mass is introduced, they still
can be neglected due to the same reasons.

As it was noticed above there are a lot of diagrams which should be generated and evaluated
in order to find three-loop contributions to the considered quantities. In our calculation we made
use of two popular codes, FeynArts[19] and DIANA [20]/QGRAF [21], which generate necessary
diagrams and produce corresponding analytic expressions. Both packages require a model file
prepared in a special format to do their job. Since we wanted to simplify the calculation as



much as possible we prepared a model file for the unbroken SM in the background field gauge
(BFG) [22, 23]. This kind of gauge allows one to find gauge coupling beta-functions solely from
UV-divergences of the corresponding gauge field propagators. We used a very fast LanHEP code
[24] by A. Semenov to derive all SM vertices from the considered SM Lagrangian (see Ref. [11])
in FeynArts notation. It is worth mentioning that the Karlsruhe group made use of alternative
package FeynRules [25] to solve similar problem. Latter on a simple script was written to
convert the FeynArts model file to that of DIANA.

A typical problem which arises in this kind of calculation is internal momenta identification.
In order to evaluate a Feynman diagram one needs to use the momenta notation of the chosen
code (MINCER/MATAD/BAMBA). In the case of gauge and Yukawa couplings the problem was
solved with the help of routine, MapMincer, which associate with every FeynArts topology
the corresponding MINCER topology and distribute MINCER momenta accordingly. It is worth
mentioning that MapMincer can deal with three-point vertices with one external leg carrying zero
momentum (i.e., when internal lines have dots). The corresponding routine for DIANA/QGRAF,
MapDiana, performs similar task, but maps every generated topology to fully massive vacuum
integrals, which appear after the mentioned“exact” decomposition (1) of internal propagators1.

Given a model file for FeynArts/DIANA together with the correct mapping of internal
momenta to the notation of the utilized three-loop codes it is straightforward to generate and
calculate one-, two-, and three-loop contributions to the 1PI Green-functions presented in Fig. 1.
For the SU(3) color algebra the COLOR [26] package was used.

Figure 1: The Green functions, considered in the beta-function calculations, together with the
corresponding renormalization constants. Left- and right-handed fermions, denoted by fL,R,

renormalise differently in the SM. The same is true for background V̂ and quantum Ṽ gauge
fields in BFG employed. The SU(2) invariance implies the presented equalities, which serve as
an additional cross-check.

From two-point Green functions we extract the corresponding wave function renormalization
constants in the MS-scheme. It is worth pointing that the self-energies of both background
and quantum gauge fields are considered. The renormalization constants of the former, ZV̂ , are
directly connected to that of gauge couplings and the renormalization of the latter corresponds
to the Z-factors of three gauge-fixing parameters, ξG, ξW , and ξB, which we keep non-zero during

1 Both MapMincer and MapDiana are coded by A. Pikelner.



the whole stage of calculation. The independence of the final results on these parameters serves
as an important cross-check of the obtained expressions.

The three-point 1PI functions for the Yukawa vertices with neutral Higgs bosons h and χ are
also presented in Fig. 1. It is interesting to note that our calculation explicitly demonstrated
that the semi-naive treatment of γ5 discussed below is only applicable if one takes into account
the gauge anomaly cancellation condition NC = 3. Here NC denotes the number of colors.

The beta-functions of the SM parameters are extracted from the corresponding
renormalization constants. For the gauge and Yukawa couplings we used the following relations

Zg1 = Z
−1/2
B̂1

, Zg2 = Z
−1/2
Ŵ

, Zgs = Z
−1/2
Ĝ

, Zyf =
Zffφ√

ZfLZfRZφ
, (2)

where g1, g2 are SU(2) and U(1) gauge couplings, respectively, gs denotes the strong coupling,
and yf is the Yukawa coupling associated with the (right-handed) fermion f = t, b, τ . Both
neutral components, φ = h, χ, gave the same result, and, thus, provided us with a confirmation of
the validity of the obtained expressions. For the Higgs self-coupling it is impossible to use MINCER
naively, so Feynman diagrams for the four-point functions (see Fig. 1) converted to the fully
massive vacuum integrals were calculated with the help of private code BAMBA (by V. Velizhanin,
who considered the hhφ+φ− vertex) and public package MATAD (by A. Bednyakov and A. Pikelner
who considered the fully symmetric hhhh vertex). These two independent evaluations lead to
the same final expression for the vertex renormalization constants, i.e., confirming the SU(2)
relation Zhhhh = Zhhφ+φ− .

A comment on the Higgs mass parameter m2 is in order. It is possible to obtain the
corresponding anomalous dimension by considering the renormalization of the |Φ|2 composite
operator within the unbroken(=massless) SM (see, e.g., Ref. [6]). This kind of result can be
found at almost no cost from the calculation of hhφ+φ− vertex. It is sufficient to select the
diagrams, which have φ+ and φ− external fields connected to the same four-point vertex (see
Fig. 2), and weight different contributions with a correct combinatorial factor. This restricted
set of diagrams gives rise to the Zhh[φ+φ−] renormalization constant.
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Figure 2: The restricted set of Feynman diagrams which is used to obtain the renormalization
constant Zhh[φ+φ−]. The diagrams of the first type have to be multiplied by 1/2.

At the end of the day, the renormalization constants for λ and m2 are obtained with the help
of the following relations

Zλ =
Zhhhh
Z2
h

=
Zhhφ+φ−

ZhZφ±
, Zm2 =

Zhh[φ+φ−]

Zh
(3)

From renormalization constants Zai for the dimensionless SM parameters,

ai =

(
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, (4)



it is straightforward to obtain the corresponding beta-functions

βi(ak) =
dai(µ, ε)

d lnµ2

∣∣∣∣
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, βi =
∑
l

al
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(1)
i
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− c(1)i , ai,Bareµ

−2ε = Zaiai = ai +
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n=1

c
(n)
i

εn
(5)

Here µ is the MS renormalization scale, ε = (4 − D)/2 is the parameter of dimensional
regularization, and ci denotes the coefficient for the single pole in ε in the expression for Zai ,
which enters the relation between the bare parameters ai,Bare and the renormalized ones.

For the anomalous dimension of the Higgs mass parameter m2 one can use similar formulae

γm2(ak) =
d lnm2

d lnµ2
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c
(n)
m2
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)
(6)

The full analytical results for the considered quantities can be found in ancillary files of the
arXiv versions of our papers. The intermediate expressions, e.g., all renormalization constants,
can also be obtained, if needed, from the authors. It is worth mentioning that the beta-functions
of all fundamental SM parameters are free from gauge–parameter dependence, which is a crucial
test for our calculation. In addition, the anomalous dimension of the Higgs doublet can be of
some interest, so we also include the corresponding expression in the ancillary files of Ref. [10].

Before going to the results we would like to touch on the issue related to the definition of
the γ5 matrix within the dimensional regularization. It is known from the literature (see, e.g.,
Ref. [27] and recent explicit calculation [6]) that the traces with an odd number of γ5 appearing
for the first time in the three-loop diagrams require special treatment. We closely follow the
semi-naive approach presented in Refs. [6, 7]. First of all, we anticommute γ5 to the rightmost
position in a fermion chain and use γ25 = 1. In the “even” traces all γ5 are contracted with each
other, so the corresponding expressions can be treated naively in dimensional regularization. In
“odd” traces we are left with only one γ5. These traces are evaluated as in four dimensions and
produce totally antisymmetric tensors via the relation

tr (γµγνγργσγ5) = −4iεµνρσ (7)

with ε0123 = 1.
Due to the fact that we use both the γ5 anticommutativity and the four-dimensional relation

(7), the cyclicity of the trace should be relinquished [28]. One has to choose a certain “reading
prescription” for an “odd” Dirac trace, i.e., start reading a closed fermion chain from a proper
place, in order to achieve the correct final result. However, in our calculations the problem of
γ5 positioning within the “odd” traces is solved implicitly since the diagram generation routines
split the traces for us at certain points. It should be stressed that a non-trivial contribution
to the considered quantities can only appear when there are two “odd” traces in a diagram,
since two ε-tensors should be “contracted” with each other to produce a non-zero effect. We can
distinguish two situations. Two “odd” traces in our three-loop calculations can appear either as
two internal fermion loops in a diagram with external bosons or, if one considers Green functions
with two external fermions, one Dirac trace from internal fermion loop can be combined with
the trace appearing after contraction with an appropriate projector.

It is easy to convince oneself that in the case of two internal traces only triangle subloops
with three external vector particles can potentially produce “eps”-tensors. However, it is known
that in the SM these kind of traces cancel upon summation over all fermion species due to the
absence of gauge anomalies [29, 30]. The same is true if one considers fermion self-energies up
to three-loops.

It turns out that the non-trivial contribution due to the contraction of two ε-tensor appears
from the Yukawa vertex (see Fig. 3). This kind of diagrams was also considered in Ref. [6].



Figure 3: The diagrams for the fermion-
fermion-Higgs vertex (ffφ), which produce
a non-zero contribution due to contraction
of two ε-tensors appearing from two Dirac
traces with γ5. The ambiguity in positioning
of γ5 within the traces does not affect the UV-
divergent part.

A final remark about γ5 is again related to the fact that the ambiguity in the choice of
“reading” point in the “odd” traces can only spoil our result for the three-loop UV-divergence
in the case of the mentioned triangle subgraphs, for which one can set all “odd” traces to zero
from the very beginning due to anomaly cancellations. For the only non-trivial case all “reading”
points are equivalent since the difference gives the contribution O(ε0) which we neglect here.
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Figure 4: The scale dependence of the relative contributions of different terms in the three-loop
corrections to the beta-functions of the (squared) gauge and Yukawa couplings. Only the most
sizable corrections are shown. The boundary conditions at scale µ = 100 GeV are given in (8).

It is obvious, that the resulting expression for the three-loop contributions to the considered
renormalization group quantities are too lengthy to be presented here. For the demonstration
purposes only, we would like to show how different relative contributions to the three-loop
corrections to the SM coupling beta-functions evolve with renormalization scale µ (see Fig. 4).
For a reasonable choice of the SM initial running parameters2 at the scale µ = 100 GeV

g1 = 0.3576, g2 = 0.6514, gs = 1.2063, yt = 0.9665, yb = 0.016, yτ = 0.01, λ = 0.13 (8)

2 obtained with the help of F. Bezrukov code http://www.inr.ac.ru/˜fedor/SM

http://www.inr.ac.ru/~fedor/SM


we solve the corresponding RGE numerically up 5·1010 GeV. With the help of these solutions one
can evaluate the three-loop beta-functions at any scale and find how different terms contribute

to the total value of β
(3)
i . From Fig. 4 one can see that the dominant contributions is due to the

strong and top Yukawa couplings. However, with the increase of the renormalization scale the
SU(2) coupling can also play a role.

It is fair to say that the most interesting SM beta-function is that of the Higgs self-coupling,
since from the evolution of the latter one can deduce the so-called “vacuum stability bound” (see
recent papers [31, 32, 33, 35] and references therein). In Fig. 5 one can find the same evolution

of the relative contributions to β
(3)
λ . In addition, the slice (λ, βλ) of the phase space (ai, βai)

is presented together with trajectories, obtained with the help of one-, two-, and three-loop
evolution from 100 GeV to 5 · 1010 GeV. One can see that for the given set of initial conditions
the running λ(µ) is driven to zero faster when one-loop RGEs are employed instead of two- or
three-loop ones. The difference between two- and three-loop evolution is not sizable, but the
fact that with three-loop corrections the scale at which λ hits zero slightly higher, favours the
latter.

(3)

Figure 5: The scale dependence of the relative contributions to the three-loop corrections β
(3)
λ .

Only the most sizable corrections are shown. The phase space trajectories from 1-,2-,and 3-loop
evolution are provided in the plane (λ, βλ). The corresponding boundary conditions are given
in Eq. (8)

To conclude, we obtained the three-loop beta-functions for the SM parameters. The results for
gauge and Higgs-potential couplings coincide with that obtained by two Karlsruhe groups. The
beta-functions for Yukawa couplings were obtained for the first time. Moreover, we established
a framework that allow us to carry out a similar calculation within an “arbitrary” QFT model.
However, it should be stressed that in a self-consistent RG analysis of the chosen model the
obtained RGEs should be accompanied by the so-called threshold (matching) corrections (see,
e.g., Refs. [31, 34, 32, 35] for the recent SM results).
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