A Web-Based Development Environment for
Collaborative Data Analysis

M Erdmann, R Fischer, C Glaser, D Klingebiel, M Komm*®, G
Miiller, M Rieger*, J Steggemann®’, M Urban and T Winchen

III. Physics Institute A, RWTH Aachen University, Aachen, Germany

“ now at Centre for Cosmology, Particle Physics and Phenomenology, Université catholique de

Louvain, Louvain-la-Neuve, Belgium

® now at CERN, European Organization for Nuclear Research, Geneva, Switzerland

* corresponding author, rieger@hysik.rwth-aachen.de

E-mail: vispa@lists.rwth-aachen.de

Abstract. Visual Physics Analysis (VISPA) is a web-based development environment
addressing high energy and astroparticle physics. It covers the entire analysis spectrum from the
design and validation phase to the execution of analyses and the visualization of results. VISPA
provides a graphical steering of the analysis flow, which consists of self-written, re-usable Python
and C++ modules for more demanding tasks. All common operating systems are supported
since a standard internet browser is the only software requirement for users. Even access via
mobile and touch-compatible devices is possible. In this contribution, we present the most recent
developments of our web application concerning technical, state-of-the-art approaches as well
as practical experiences. One of the key features is the use of workspaces, i.e. user-configurable
connections to remote machines supplying resources and local file access. Thereby, workspaces
enable the management of data, computing resources (e.g. remote clusters or computing grids),
and additional software either centralized or individually. We further report on the results of
an application with more than 100 third-year students using VISPA for their regular particle
physics exercises during the winter term 2012/13. Besides the ambition to support and simplify
the development cycle of physics analyses, new use cases such as fast, location-independent
status queries, the validation of results, and the ability to share analyses within worldwide
collaborations with a single click become conceivable.

1. Introduction
The demand for distributed resources and global access to data experienced a rapid growth in
the past years. In fact, both, the way we use instrumental technology and the requirements we
claim on hardware and software currently undergo a change of paradigms. The development
work of scientists is no longer subject to limitations such as locally restricted availability of
computing power and data access. Instead, the change of infrastructure becomes the focus of
attention in order to fulfill individual needs concerning place and time independence. This is
especially achieved by the progress made in the field of networking technology.

The consequent advantages of network (and internet) communication can be applied to
scientific workflows. We present a new approach that is based on the desktop version of the Visual

mailto:rieger@physik.rwth-aachen.de

Physics Analysis (VISPA) project, which has been successfully used in various high-energy and
astroparticle physics data analyses [1]. The new concept implements the VISPA platform for
the application within a standard web-browser. The underlying server-client-approach is based
on central software, data, and resource deployment as well as time- and location-independent
accessibility. It also provides the opportunity of cooperative analysis creation. Therefore, it can
be used as a platform for various scientific applications, e.g. for novel blended learning concepts
in a wide scope of physical teaching.

2. The Visual Physics Analysis project

The Visual Physics Analysis (VISPA) project provides a development environment for physics
analyses covering the entire analysis spectrum from the design and validation phase to the
execution of analyses and the visualization of results. It utilizes the C++ Physics eXtension
Library (PXL) [2] as underlying analysis framework.

Analysis that are based on PXL are subdivided into logically separated modules, i.e. blocks of
code that are designated to carry out well defined tasks. In addition to predefined I/O modules,
PXL provides the possibility to include reusable, user-defined modules, written either in C++
or Python [3]. Connections between these modules describe the data-flow of the analysis, which
is subject to an event-by-event approach.

VISPA provides a graphical representation of analyses. It not only reflects their structure,
i.e. the sequence of modules and the connections between them, but it also allows for graphical
steering. Therefore, the web-based implementation of VISPA includes a variety of extensions,
aimed to cover a wide range of functionality.

3. Technical implementation

3.1. Server-client approach

The VISPA platform follows a server-client approach that is typical for modern web applications.
A web browser (client) sends a specific request to a web server via the Hypertext Transfer
Protocol (HTTP). The server processes the request to create a response that is sent back to the
client. There, it can be parsed to either display new content, usually via HTML markup [4], or
to update already existing content using the AJAX concept [5].

The server is built on the basis of the Python web framework CherryPy [6]. This allows
for a convenient integration of various scientific software packages written in Python, such as
PXL, ROOT [7], and NumPy [8]. The user management is realized using a SQL database that
stores login information for all registered users. The SQL dialect, e.g. MySQL, PostgreSQL, or
SQLite, can be altered as the object-relational mapping (ORM) framework SQLAlchemy [9] is
incorporated. The content of HI'TP responses is created and cached using the Mako templating
library [10].

Although the server-client system is intended to operate on separate computers via network
communication, the possibility to install the VISPA platform locally on a single computer is
preserved. In this operation mode, the user does not need to register to the platform, which
accordingly is accessible only from the local machine.

3.2. Workspaces

The implementation of workspaces is a new key ingredient of the VISPA platform. Scientific
analyses often depend to a great extent on the availability of computing power and data access.
Hence, in some scientific environments a single machine may not be appropriate for acting
as both, web server and processing unit at the same time. For the purpose of splitting the
architecture into logically and physically separated units, all user-related computational tasks
are sourced out into workspaces.

Every machine running Python that is accessible via SSH over the network can act as a
workspace, regardless of whether it is, e.g., a mobile phone, a desktop machine, or a computing
cluster. Access is granted if the client is able to connect to the workspace using password or
public key authentication. At the beginning of a connection, all necessary files are copied over
to the workspace where a receiving process is started. The communication between this process
and the VISPA server is subject to the JSON-RPC 2.0 specification [11]. This way, the entire
host system of the workspace can be utilized including file access, permissions settings, and CPU
usage.

In this model, the VISPA server itself takes on the role of an intermediate node: it serves
requests and delivers files related to the VISPA platform on the one hand, and handles
connections as well as distributes computational tasks to workspaces on the other hand. A
generic overview of this approach is shown in figure 1.

Network / Internet Local

VISPA
Server (\/\/77/)

Server Location

Client Web Browser

asl\d‘oWS
Arbitrary Location | Workspacel€ "

Figure 1. Schematic overview of the workspace approach.

3.3. User interface and extensions

The graphical user interface (GUI) is based on the HTML5 markup language and the JavaScript
scripting language, which are both supported by common web browsers. Advanced interaction
components and compatibility for mobile devices are implemented using the DOJO framework
[12] and the jQuery UI framework [13]. This software foundation is provided by the web server
and initially transfered to the web browser on startup. It is then utilized by both, the VISPA
platform itself and its extensions. A selection of extensions is illustrated in figure 2.

The Analysis Designer provides the GUI for developing physics analyses based on the PXL
toolkit. Modules and connections between them can be created and/or changed by drag & drop
gestures in order to steer the analysis flow.

The File Browser implements the possibility to browse through personal and public files that
are available on the currently selected workspace. It provides common features like, e.g., up-
and download, copy, and paste functionality as well as the possibility to select and open files in
other extensions.

In high energy physics, a data file may contain sophisticated information of multiple events.
Files of the format pxlio, introduced by PXL, can be inspected event-by-event with the PXL
Browser. The properties of the constituents can be obtained by clicking on their graphical
representations.

For the purpose of directly inspecting, creating, and steering analysis code within the web
browser, a Code Editor is incorporated based on the Ace Editor project [14].

Zvispa x

& = € [} vispa.physik.rwth-aachen.de/server/

& = C | [vispa.physik.rwth-aachen.de/server/

<> © Download |© Upload | (33| = 1 | 2 Refresh |

~ MAIN user » Ex5 » exercisel

Skimmed Output

e B W D & L

= Examples
. data output DileptonMassP! Parsed_Z_llpxii ZMassPlotier.p oms_ll_shortx
& Exercises otter.py ° y ml

cms_z_selectio oms_z_shortx count_scriptpy lepton_selection
nxml il oy

Failed Output

Filename: PtSkim.xmi
Filepath: user/
default

€ = | [vispaphysikruth-aschen de/sever/ BaxHO& = |e€>5¢ HO « =

AnllyslsDulgnerl FlleBrowser I PXLBrowser ‘l CodeEditor = Annyuwulgmrl FlleBrowser l PXLBrowser I CodeEditor =

] 6 # Get all particles of the event
Rl 54/100 ey 4 e particles - event.getParticles()
Info 58
Name b 59 # Loop over particles and find leptonl and lepton2
Id 7124ad12-55ad-444d-95b5-df5S42dda5fbs 60 - for particle in particles:
Typ0 particle 61- if particle.getNane() == "lepton":
62 Teptont - particle
: 63~ elif particle.getName() — "lepton2":
o Particlel(Docul=) 64 Tleptonz = particle
E 75 65
Et 9.74948661329318 66 - if leptonl and lepton2:
Mass 4.190000000000002 g; ; Create Z partisle @
EI Eta 0.010262295787840086 & = event.createParticle()
Phi -1.7897021814410652 70 # Set Name of Z boson
P 8.803771918899306 71 Z.setName('Z")
ooar 8.80330835587643 22
Pt - 55876434 73 # Reconstruct Z boson from two leptons
Px -1.9117415755080884 74 Z.linkDaughter(lepton1)
Py -8.593223036621223 75 Z.linkDaughter(lepton2)
76
P 0.09034373999428713
i 7 # Set four-momentum from daughters
Rolatie (Docy =) n Z.setP4FromDaughters()
Daughter ids 80 # Fill histogram
Daughter 81 self._h_rec_Zmass.Fill(Z.getMass())
names

‘Flln: DileptonMassPlotter.py

Figure 2. Extensions of the web-based implementation of VISPA (from top-left to bottom-
right): Analysis Designer, File Browser, PXL Browser, and Code Editor.

4. A field test with third year students

The practical use of the VISPA platform was tested in the scope of the course “Particle Physics
and Astrophysics” held during the winter term 2012/13 with 3 hours of lectures per week and
exercises due every 2 weeks. The course consisted of more than 100 third year physics students.
25 % of the points of every exercise could be achieved by successfully working on data analysis
tasks using VISPA. A total of 50 % of all exercise points was mandatory to receive the permission
to participate in the final exam.

The server setup was specially dedicated to the application with students. An instance of the
VISPA platform was implemented on a Linux server with 10 worker nodes in accordance with
a security concept created in collaboration with the computing center of the RWTH Aachen
University. It turned out that even at peak times, memory and CPU occupancy were sufficient
to supply each student request with adequate computing power.

In order to assess the success of the application, a survey was started to obtain feedback about
the acceptance and learning benefit of the VISPA platform. 63 students participated the survey
that comprised both, predefined questions and the possibility for free text comments. Valuable
comments on the workflow were received. The majority concerned the number of interactions,
i.e. the number of mouse clicks, needed to perform an iteration of the data analysis exercise.
The result of the overall rating for the VISPA platform is shown in figure 3, yielding a positive
assessment of the learning project, which is visible on the right side of the distribution.

20 — better —

15
10

6)
[

“N 1
%7 2 3 4 s
Overall mark VISPA

Figure 3. The student’s overall rating of the VISPA learning concept on a scale with the
highest value being the best mark.

5. Conclusions

We have presented a web-based development environment addressing workflows in high energy
and astroparticle physics. It enables the development and execution of physics data analysis
in a standard web-browser. Workspaces are a key ingredient of the platform. They allow for
remote access to data, software, and resources on arbitrary machines that are accessible via
SSH. The potential of the presented web platform is comprehensive. For example, scientists are
able to collaborate on analysis concepts and algorithms through the web interface. A new level
of transparency may be offered in publications by providing web access to the corresponding
analysis. Students may get access to analysis examples exploring public experiment data with
professional tools that are standard in todays physics analyses.

Acknowledgments

We wish to thank the organizers of the ACAT2013 conference for their kind support. This
work is supported by the Ministerium fiir Wissenschaft und Forschung, Nordrhein-Westfalen,
the Bundesministerium fiir Bildung und Forschung (BMBF), and the Helmholz Alliance
Physics at the Terascale. M Rieger and C Glaser gratefully thank for support by the
Deutsche Forschungsgemeinschaft (DFG) and T Winchen gratefully acknowledges funding by
the Friedrich-Ebert-Stiftung.

References
[1] Bretz H-P et al. (2012) A Development Environment for Visual Physics Analysis JINST 7 T08005
doi:10.1088/1748-0221/7/08 /T08005 arXiv:1205.4912v2 http://vispa.physik.rwth-aachen.de

Erdmann M et al. (2012) Physics eXtension Library (PXL) http://vispa.physik.rwth-aachen.de/PXL
Python Programming Language http://www.python.org
World Wide Web Consortium HTML5 Specification http://www.w3.org/TR/htmlb
Holdener A T (2008) Ajaz - The Definitive Guide (O’Reilly Media, Sebastopol, CA, USA)
The CherryPy Team CherryPy - A Minimalist Python Web Framework http://www.cherrypy.org
Brun R and Rademakers F (1996) Nucl. Inst. & Meth. in Phys. Res. A 398 81-86 http://root.cern.ch
NumPy Developers http://www.numpy.org/
SQLAIlchemy Authors and Contributors http://wuw.sqlalchemy.org

Bayer M Mako Templates for Python http://www.makotemplates.org/

JSON-RPC 2.0 Specification http://www.jsonrpc.org/specification

The Dojo Foundation http://dojotoolkit.org

The jQuery Foundation http://jqueryui.com

Cloud9 IDE and the Mozilla Foundation http://ace.c9.1io

=~ W N

W N = O

— === =g 00 o o

http://arxiv.org/abs/1205.4912
http://vispa.physik.rwth-aachen.de
http://vispa.physik.rwth-aachen.de/PXL
http://www.python.org
http://www.w3.org/TR/html5
http://www.cherrypy.org
http://root.cern.ch
http://www.numpy.org/
http://www.sqlalchemy.org
http://www.makotemplates.org/
http://www.jsonrpc.org/specification
http://dojotoolkit.org
http://jqueryui.com
http://ace.c9.io

