
Optimizing ATLAS code with different profilers

S Kama1, R Seuster2, G A Stewart3 and R A Vitillo4

1 Southern Methodist University, Dallas, TX, USA
2 TRIUMF, Vancouver BC V6T 2A3, Canada
3 CERN and School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ
4 Lawrence Berkeley National Laboratory, USA

E-mail: sami.kama@cern.ch

Abstract. After the current maintenance period, the LHC will provide higher energy collisions
with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to
speed up substantially. However, ATLAS code is composed of approximately 6M lines, written
by many different programmers with different backgrounds, which makes code optimisation a
challenge. To help with this effort different profiling tools and techniques are being used. These
include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools
like Pin, PAPI, and GOoDA; as well as techniques such as library interposing. In this paper
we will mainly focus on Pin tools and GOoDA. Pin is a dynamic binary instrumentation tool
which can obtain statistics such as call counts, instruction counts and interrogate functions’
arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes
for linear algebra calculations which has provided the insight necessary to achieve significant
performance improvements. Complimenting this, GOoDA, an in-house performance tool built
in collaboration with Google, which is based on hardware performance monitoring unit events,
is used to identify hot-spots in the code for different types of hardware limitations, such as
CPU resources, caches, or memory bandwidth. GOoDA has been used in improvement of the
performance of new magnetic field code and identification of potential vectorization targets in
several places, such as Runge-Kutta propagation code.

1. Introduction
The Large Hadron Collider (LHC) [1] is a proton collider built about 100m underground near
Geneva, Switzerland. It has a 27 km circumference and it is designed to collide protons every
25 ns at a center-of-mass energy of 14 TeV with a luminosity of 1034 cm−2 s−1. It started
operation in 2010 and gradually increased the collision energy and luminosity. In 2011 LHC
delivered a peak luminosity of 3.42×1033 cm−2 s−1 in 31 weeks of proton-proton collision runs
at
√
s = 7 TeV with 50 ns bunch crossing interval. In 2012, the center-of-mass energy was

increased to 8 TeV and the peak instantaneous luminosity exceeded 7.7×1033 cm−2 s−1. From
March 2013, it has been shutdown for two years for maintenance and upgrades. It will operate
at a higher beam energy and higher luminosity after the shutdown.

There are 4 detectors located at the LHC. ATLAS [2] is one of the two large general purpose
detectors. It is composed of different co-centric cylindrical detectors of about 100 M readout
channels in total. The ATLAS detector has a three-level trigger system to do event selection
and reduce the enormous amounts of data produced to manageable sizes. Level 1 of the trigger
is based on hardware and located on the detector. It has a design input rate of 40 MHz and
an output rate of 75 kHz. Level 2 and Level 3 are based on software running on a PC farm of

about 16k cores. They reduce final event rate to 600 Hz at ∼1.6 MB per event. Selected events
are stored and processed offline in more detail. Both online and offline selection is done using
the same software framework called Athena, with different configurations. Up to the shutdown
in 2013 ATLAS had stored and processed ∼22 PB of raw data.

2. ATLAS Software
The ATLAS software framework is based on the Gaudi framework [3] and comprises more than
6 million lines of C++ and Python, with a small amount of FORTRAN code. It is spread over
about 2000 packages, producing more than 4000 libraries of various sizes. It has been evolving
for more than 10 years and was written by people with varied programming backgrounds. Some
parts of the code were written by expert level programmers, while some were written by people
with minimal programming knowledge. Throughout its development, detailed knowledge of
packages has been frequently lost due to authors and maintainers changing topics, institutes
or leaving the field. Athena configuration is done in Python and reconstruction of a 2012 high
pile-up sample(〈µ〉 ∼ 35) with 64-bit application consumes about ∼4 GB of virtual memory and
has approximately 2.7 GB resident set size(RSS).

With the increase in LHC energy, collision rate, event complexity and trigger output, ATLAS
software needs to speed up considerably. Due to sheer size of the codebase and the domain
expertise required it is not practical to go through the codebase to fix even the simplest
perfomance issues. So instead, efforts should be focused on so called hot-spots, where a small
section of source code contributes significantly to overall application run time. In order to
monitor the performance of Athena, ATLAS uses various tools. These range from commonly
available tools such as Valgrind suite, Google perf tools, oprofile, Intel VTUNE, igprof, PAPI
and Pin [4] to in house developed tools PerfMon and Generic Optimization Data Analyzer
(GOoDA) [5], which is developed in collaboration with Google. However, the enormous size of
Athena creates significant challanges for most of these tools. In this report we will be describing
our experience of improving the performance of Athena using GOoDA and Pin.

3. GOoDA
The Generic Optimization Data Analyzer is an open source project developed by a collaboration
between ATLAS and Google. It uses Linux perf tool to configure and collect detailed
performance monitoring unit(PMU) information from hardware monitoring units built in CPUs.
Then it analyses the collected monitoring information, grouping it into a few issue classes. These
issue classes provide a more general understanding of the code’s performance than CPU specific
PMU values. Results of the analysis are written in report spreadsheets which can we viewed
through a web browser either locally or remotely. An example of such a report is shown in
figure 1.

GOoDA reports contain hot-spots for each type of performance issue down to instruction level.
It can also display source line if sources are available. Figure 1 shows a profile of Athena offline
reconstruction job with high number of proton collisions (pile-up) per input event. Investigation
of the profile shows several groups of code with rather specific issues. The most frequently
encountered code domain is the tracking code. Being composed of a high number of arithmetic
calculations, due to vector and matrix operations, this code frequently has instruction related
issues, such as instruction starvation. It is possible to overcome such issues by using single
instruction multiple data (SIMD) operations. Due to the intrinsic geometric nature of the
tracking problem, representing tracking operations in terms of primitives of a SIMD vector
math library is the most feasible approach, both from maintainability and development time
points of view. However, such vector math libraries are not equally efficient for all types of
operations or for all sizes of vectors and matrices. How the decision on which vector math
library to use was taken is explained in the next section.

Generic Optimization Data Analyzer
Reports

Help

reports/Sample

reports/RecoHiPU1000EvtPinSingle

Cycles Samples Enter search term

func
tion

 nam
e

offs
et

leng
th

modu
le

proc
ess

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

26285302 (100%) 16722970 (63%) 26014389 33711057 9195152 (34%) 8005546 (30%) 499448 (1%)

Trk::RungeKuttaPropagator… 0x250e0 0x1051 libTrkExRungeKuttaPropagato… athena.py 1384230 (5%) 689204 (49%) 1919291 2632987 9211 (0%) 228579 (16%) 2932 (0%)

operator new(unsigned lon… 0x134b0 0x3da libtcmalloc_minimal.so athena.py 652571 (2%) 279268 (42%) 889013 1133805 240962 (36%) 234114 (35%) 3260 (0%)

operator delete(void*) 0x12c10 0x2da libtcmalloc_minimal.so athena.py 479802 (1%) 203097 (42%) 658602 873682 147872 (30%) 112605 (23%) 3697 (0%)

InDet::SiSpacePointsSeedM… 0x8b7d0 0xd74 libSiSpacePointsSeedTool_xk… athena.py 622008 (2%) 293622 (47%) 887119 965745 227310 (36%) 503 (0%) 2166 (0%)

InDet::TRT_TrajectoryElem… 0x6c180 0x8d9 libTRT_TrackExtensionTool_x… athena.py 551277 (2%) 421609 (76%) 329595 382504 542788 (98%) 1641 (0%) 139033 (25%)

bsolinterp_ 0x15680 0xc40 libBFieldCore.so athena.py 287540 (1%) 147594 (51%) 379448 455976 182745 (63%) 99303 (34%) 5885 (2%)

__dynamic_cast@@CXXABI_1.3 0xbf200 0x11f libstdc++.so.6.0.10 athena.py 307011 (1%) 189831 (61%) 235244 352133 210421 (68%) 112561 (36%) 2822 (0%)

Trk::MagneticFieldMapSole… 0x5940 0x1c5 libTrkMagFieldUtils.so athena.py 449764 (1%) 287254 (63%) 315379 424356 127635 (28%) 105407 (23%) 3479 (0%)

master.0.gbmagz_ 0xfb80 0x4a0b libBFieldStand.so athena.py 360218 (1%) 166033 (46%) 537975 621755 38592 (10%) 30454 (8%) 416 (0%)

Trk::RungeKuttaPropagator… 0x277f0 0xff5 libTrkExRungeKuttaPropagato… athena.py 103548 (0%) 65400 (63%) 74474 100722 36798 (35%) 103723 (100%) 963 (0%)

InDet::TRT_Trajectory_xk:… 0x64200 0x1ce libTRT_TrackExtensionTool_x… athena.py 496342 (1%) 309302 (62%) 398039 402833 131 (0%) 919 (0%) 197 (0%)

Trk::PatternTrackParamete… 0x5220 0xb93 libTrkPatternParameters.so athena.py 271153 (1%) 111591 (41%) 475779 654461 175 (0%) 107792 (39%) 1181 (0%)

Trk::RungeKuttaUtils::tra… 0x179f0 0x923 libTrkExUtils.so athena.py 249429 (0%) 134726 (54%) 358266 453831 37870 (15%) 113371 (45%) 416 (0%)

Trk::RungeKuttaPropagator… 0x26140 0x573 libTrkExRungeKuttaPropagato… athena.py 167081 (0%) 106231 (63%) 126570 173298 4551 (2%) 99610 (59%) 1400 (0%)

solefittorsiml_ 0xace0 0x10c8 libBFieldCore.so athena.py 224926 (0%) 94451 (41%) 251920 382992 10042 (4%) 60273 (26%)

deflate_slow 0x6850 0x976 libz.so.1.2.3 athena.py 267347 (1%) 116870 (43%) 405506 449760 26997 (10%) 328 (0%) 88 (0%)

TTrainedNetwork::calculat… 0x1e320 0x43e libTrkNeuralNetworkUtilsLib… athena.py 174563 (0%) 42079 (24%) 367583 420909 169072 (96%) 3588 (2%) 20193 (11%)

__cxxabiv1::__vmi_class_t… 0xc1670 0x5ce libstdc++.so.6.0.10 athena.py 117506 (0%) 56777 (48%) 153151 217375 14067 (11%) 40999 (34%) 1291 (1%)

std::_Rb_tree_increment(s 0x69c00 0x5a libstdc++.so.6.0.10 athena.py 257152 (0%) 193546 (75%) 112593 145749 224291 (87%) 6738 (2%) 7854 (3%)

Cycles Samples Enter search term

proc
ess

path

modu
le p

ath

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

bran
ch_m

ispr
edic

tion

stor
e_re

sour
ces_

satu
rate

d

26285302 (100%) 16722970 (63%) 26014389 33711057 9195152 (34%) 8005546 (30%) 499448 (1%) 946674 (3%) 456393 (1%) 2774411 (10%)

athena.py 25922896 (98%) 14847473 (57%) 25726701 33116688 8881359 (34%) 7703283 (29%) 483609 (1%) 933110 (3%) 443441 (1%) 2401657 (9%)

vmlinux 315937 (1%) 1832252 (579%) 253488 536423 239868 (75%) 256911 (81%) 11355 (3%) 10895 (3%) 10917 (3%)

kworker/2:1 8357 (0%) 5704 (68%) 2656 5157 2363 (28%) 9911 (118%) 306 (3%) 985 (11%)

reports/RecoHiPU1000EvtPinSingle Hotspots

GOoDA Visualizer file:///home/kama/gooda/gooda-visualizer/index.html#

1 of 1 09/15/2013 04:39 AM

Figure 1. Main page of GOoDA profile. The left frame displays available reports. The top
right frame displays processes in the report and their respective PMU event counts. The bottom
right frame shows list of hot-spot functions in the selected process and their respective event
counts.

The second group is the frequent use of new/delete operators, which is due to the design
of the event data model. Frequent memory allocation and deallocation was already identified
previously and some actions, such as replacing standard malloc with thread caching malloc
(tcmalloc) from Google, were used to mitigate the effect of this. However, it still remains a
significant problem and the profile helps to quantify it. In order to further reduce these frequent
allocation/deallocation effects, there have been some changes in the event data model. There
are also some studies, such as using memory arenas and different memory allocators, ongoing to
reduce the impact on the performance.

The third group is the magnetic field code. This was written in FORTRAN and most of
the time was actually spent on interfacing the old FORTRAN code with the C++ framework.
So, rather than optimizing FORTRAN, the code was re-written in C++ from scratch. The
new code was already 2x faster than the FORTRAN implementation due to a better design
and native interfacing. After profiling a simple test job, which is querying the magnetic field
at random points in the detector to stress it, further hot-spots were identified (see figure 2).
The most notable point in this table is that about 70% of stall cycles are due to instruction
latency coming from division operations. Following up the report points to the source lines 101-
108 in figure 3. However, even though replacing division operators with inverse multiplications
is straight forward and common performance practice, it doesn’t maximize the performance.
Further profiles have shown that there is instruction starvation around the lines shown in figure 3.
After a detailed investigation of the source code, it can be seen that the complex calculations in
lines 84-95 can be written as a dot product of two vectors with properly arranged coefficients.
Profiling the version with the vector products and inverse multiplications is shown in the bottom
table in figure 2. It is clearly visible here, that total unhalted core cycles count is reduced by 42%

with respect to initial profile. The final version is about 40% faster than initial code and overall
effect of the new code with respect to the FORTRAN implementation is measured between 5%
to 20% improvement in the runtime of simulation jobs.

Generic Optimization Data Analyzer

Reports

Help

Cycles Samples Enter search term

func
tion

 nam
e

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

bran
ch_m

ispr
edic

tion

stor
e_re

sour
ces_

satu
rate

d

inst
ruct

ion_
late

ncy

►ari
th:c

ycle
s_di

v_bu
sy

►ari
th:d

iv
exce

ptio
n_ha

ndli
ng

unha
lted

_ref
eren

ce_c
ycle

s

189750443 (99%) 135036818 (71%) 135006354 171163932 1685841 (0%) 525883 (0%) 7942 (0%) 1173179 (0%) 460754 (0%) 87043710 (45%) 87043918 (45%) 5670196 4885795 (2%) 172420831

BFieldCache::getB(double … 110657873 (100%) 77277673 (69%) 89363774 101452126 115206 (0%) 39329 (0%) 547 (0%) 15908 (0%) 116371 (0%) 53349337 (48%) 53349461 (48%) 3238233 1629415 (1%) 100627581

MagField::IMagFieldSvc::g… 26676464 (100%) 20986468 (78%) 14775629 19667221 66770 (0%) 24991 (0%) 328974 (1%) 22589 (0%) 17073200 (64%) 17073241 (64%) 999788 208584 (0%) 24165601

MagField::AtlasFieldSvc::… 6399933 (100%) 4263998 (66%) 5628152 6579907 911735 (14%) 14433 (0%) 1094 (0%) 214006 (3%) 281013 (4%) 2667794 (41%) 2667810 (41%) 164328 52170 (0%) 5818440

Cycles Samples Enter search term

proc
ess

path

modu
le p

ath

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

bran
ch_m

ispr
edic

tion

stor
e_re

sour
ces_

satu
rate

d

inst
ruct

ion_
late

ncy

189750443 (99%) 135036818 (71%) 135006354 171163932 1685841 (0%) 525883 (0%) 7942 (0%) 1173179 (0%) 460754 (0%) 87043710 (45%) 4885795 (2%)

athena.py 189464746 (100%) 131774608 (69%) 134857610 170948425 1593557 (0%) 432386 (0%) 6063 (0%) 1155535 (0%) 454381 (0%) 84431082 (44%) 4786663 (2%)

aggregated_kernel_object 863085 (100%) 3767513 (436%) 288639 480555 250815 (29%) 352229 (40%) 5707 (0%) 77280 (8%) 14933 (1%) 2623994 (304%) 122720 (14%)

vmlinux 67483 (100%) 3114007 (4614%) 22088 43521 34407 (50%) 16360 (24%) 166 (0%) 2735 (4%) 737 (1%) 2575534 (3816%) 93663 (138%)

reports/MagFieldTestDevValOrig Hotspots

GOoDA Visualizer https://test-gooda.web.cern.ch/test-gooda/visualizer/

1 of 1 09/15/2013 04:12 AM

Generic Optimization Data Analyzer

Reports

Help

Cycles Samples Enter search term

func
tion

 nam
e

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

bran
ch_m

ispr
edic

tion

stor
e_re

sour
ces_

satu
rate

d

inst
ruct

ion_
late

ncy

►ari
th:c

ycle
s_di

v_bu
sy

►ari
th:d

iv
exce

ptio
n_ha

ndli
ng

unha
lted

_ref
eren

ce_c
ycle

s

uops
_dec

oded
:sta

ll_c
ycle

s

94257696 (100%) 61237244 (64%) 91887940 105711527 956148 (1%) 282528 (0%) 6704 (0%) 435646 (0%) 303020 (0%) 24884101 (26%) 24884136 (26%) 1367684 96165 (0%) 86335247 66092135

BFieldCache::getB(double … 64322753 (100%) 37891791 (58%) 70511475 78526221 59705 (0%) 25697 (0%) 9183 (0%) 93522 (0%) 10632460 (16%) 10632493 (16%) 580526 40112 (0%) 58873675 44769017

MagField::MagFieldTestbed… 20231953 (100%) 15839738 (78%) 12068630 14851856 34362 (0%) 14225 (0%) 191 (0%) 1295438 (6… 34717 (0%) 10925070 (53%) 10925109 (53%) 571357 11936 (0%) 18555440 14118217

MagField::AtlasFieldSvc::… 4984516 (100%) 3256834 (65%) 4553073 5494224 636914 (12%) 9538 (0%) 409 (0%) 156742 (3%) 152409 (3%) 1746017 (35%) 1746039 (35%) 98775 2289 (0%) 4579292 3426909

Cycles Samples Enter search term

proc
ess

path

modu
le p

ath

unha
lted

_cor
e_cy

cles

uops
_ret

ired
:sta

ll_c
ycle

s

inst
ruct

ion_
reti

red

uops
_ret

ired
:any

load
_lat

ency

inst
ruct

ion_
star

vati
on

band
widt

h_sa
tura

ted

bran
ch_m

ispr
edic

tion

stor
e_re

sour
ces_

satu
rate

d

inst
ruct

ion_
late

ncy

exce
ptio

n_ha
ndli

ng

94257696 (100%) 61237244 (64%) 91887940 105711527 956148 (1%) 282528 (0%) 6704 (0%) 435646 (0%) 303020 (0%) 24884101 (26%) 96165 (0%)

athena.py 94114415 (100%) 59444706 (63%) 91806848 105593887 906880 (0%) 233751 (0%) 5178 (0%) 425618 (0%) 299423 (0%) 23852661 (25%) 91833 (0%)

aggregated_kernel_object 444775 (100%) 2049130 (460%) 149172 242271 139002 (31%) 185191 (41%) 5723 (1%) 41257 (9%) 7766 (1%) 1032721 (232%) 14960 (3%)

vmlinux 28367 (100%) 1711598 (6033%) 12828 25077 19157 (67%) 9183 (32%) 2616 (9%) 545 (1%) 1020131 (3596%) 2589 (9%)

reports/MagFieldTestDevValVect Hotspots

GOoDA Visualizer https://test-gooda.web.cern.ch/test-gooda/visualizer/

1 of 1 09/15/2013 04:18 AM

Figure 2. Profile report of new magnetic field test job. The top profile is before optimization.
The first hot-spot shows high percentage of stall cycles mostly originating from instruction
latency coming from division operations. The bottom profile is after optimizing divisions and
multiplications.

Figure 3. Source code of hot-spots in the magnetic field code. Division operations are the
cause of the instruction latency and complex calculations are the cause of instruction starvation.
These complex calculations can be re-written as a dot product of two vectors.

4. Pin Tools
Pin is a dynamic binary instrumentation framework from Intel. It instruments binaries at
run-time, eliminating need to modify or recompile the code. It can instrument the binary
from instruction level to function level and supports dynamically generated code. Pin can
access function parameters and register contents and it can work with threaded programs. If
available, it provides limited access to symbol and debug information in the original binary.
Instrumentation is done on an in-memory copy of the binary. Pin inspects the instructions in

original binary and inserts calls to analysis functions. Due to its powerful features it has been
used in computer architecture, security, emulation and parallel program analysis tools, such as
Intel’s Parallel Inspector, Parallel Amplifier, Trace Analyzer and Collector as well as CMP$im
and many others. It has detailed documentation and an active user support community called
PinHeads.

As mentioned in previous section, tracking code is largely composed of vector and martix
operations. In Athena, CLHEP library [6] is used for most of the vector and matrix
representation and their operations. However, the CLHEP library is not performance optimized
and does not vectorize well. There are other SIMD vector and matrix libraries available, each
having different performance for different primitive sizes and operations. In order to quantify
most common vector dimensions and operation we instrumented CLHEP vector classes in Athena
with Pin.

Table 1. Top 10 most frequently called CLHEP functions in Athena for 20 events with total
instructions and average instructions per call, sorted by total instruction count.

Calls Instr <instr>/call Function
1778523 6392431813 3594.24 operator*(HepMatrix const&, HepSymMatrix const&)

671676353 5988139520 8.92 Hep2Vector::operator()(int) const
232093102 5956556656 25.66 Transform3D::operator()(int, int) const
285282108 3709057782 13.00 Hep3Vector::operator()(int)

15815930 3179001930 201.00
HepRotation::rotateAxes(Hep3Vector const&,

Hep3Vector const&, Hep3Vector const&)
20529818 2422518524 118.00 Transform3D::inverse() const
31612743 2212258670 69.98 HepSymMatrix::HepSymMatrix(HepSymMatrix const&)
28914115 1929106393 66.72 HepVector::HepVector(int, int)
51974716 1819115060 35.00 operator*(Transform3D const&, Point3D<double>const&)
27652274 1506352669 54.47 HepVector::HepVector(HepVector const&)

Table 1 shows the most frequently called CLHEP functions, together with their instruction
costs and averge number of instructions per event, sorted by their total instruction counts.
The multiplication operator for multiplication of a matrix with a symmetric matrix is the most
expensive operation. These matrices usually have dimensions 5×5, 5×3, 3×3 and 3×5. Accessor
operators for vectors and 3D transformation matrices also contribute significantly to instruction
counts. The number of instructions can be significantly reduced by inlining.

Using information gained from Pin instrumentation, we devised a benchmark for various
SIMD vector math libraries. The benchmark composes several operations such as A5×3×B3×5,
A5×3×B3×5 + αC5×5 and A4×4×B4×4. The 4×4 matrices are benchmarked in place of 3×3
matrices since a translation and rotation operation can be combined in this way. We implemented
these operations using various vector math libraries such as CLHEP, the Intel Math Kernel
Library(MKL) [7], the S-Matrix library [8] and the Eigen [9] library. The speedup ratio with
respect to CLHEP for each library is shown in figure 4. Intel MKL was between 5-20% slower
than CLHEP for small matrix operations. This is probably due to its tuning for rather large
sized matrix operations. Nevertheless, for A5×3×B3×5 + αC5×5 it was about 2 times faster
than CLHEP. The S-Matrix library, which is included in ROOT framework and based on C++
expression templates, provided a speed up between 3.2 to 4.4 times compared to CLHEP. The
best speedup is achieved by Eigen library which achieved 6 to 12 times speed up with respect
to CLHEP depending on the operation. Eigen is similar to S-Matrix in that it uses expression
templates, however, on top of that, it also contains explicit vectorization with SIMD instructions,

Figure 4. Speedup ratios of various libraries for different operations with respect to CLHEP
library. The matrix sizes were found by instrumenting Athena and correspond to most commonly
used matrix sizes in ATLAS reconstruction. The Eigen library performs significantly better than
the other candidates.

avoids dynamic memory allocations and unrolls loops whenever it makes sense for fixed size
matrices. Thanks to its significant speedup with respect to CLHEP, Eigen was choosen as a
replacement for CLHEP. Migration from CLHEP to Eigen library in Athena framework is in
progress.

5. Conclusions
The optimization of many-developer large code bases such as Athena is a challenging task. Using
GOoDA we identified several performance problems and focused our efforts on these points.
Replacement of magnetic field code alone provided up to 20% improvement in overall runtime
while maintaining same physics performance and being used as the default field implementation
in recent Athena releases. Using Pin we analyzed the most frequently used vector and matrix
operations in Athena and better constrained the requirements of the vector math library. Using
this information we picked the Eigen library as a replacement for CLHEP.

Both GOoDA and Pin are proven to be valuable tools for analyzing and improving Athena
framework. Much information can be gained with little effort. Both tools can be used by average
programmer at a basic level after some study, however it requires a certain level of expertise to
fully exploit either tool.

References
[1] Evans L and Bryant P 2008 JINST 3 S08001
[2] Aad G et al. (ATLAS Collaboration) 2008 JINST 3 S08003
[3] Clemencic M, Degaudenzi H, Mato P, Binet S, Lavrijsen W et al. 2010 J.Phys.Conf.Ser. 219 042006
[4] Luk C, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi V J and Hazelwood K 2005

Programming Language Design and Implementation (PLDI) 190–200
[5] Calafiura P, Eranian S, Levinthal D, Kama S and Vitillo R 2012 J.Phys.Conf.Ser. 396 052072
[6] CLHEP Web Page URL http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/index.html

[7] Intel Math Kernel Library URL http://software.intel.com/en-us/intel-mkl

[8] ROOT Manual URL http://root.cern.ch/root/html/MATH_SMATRIX_Index.html

[9] Eigen Web Page URL http://eigen.tuxfamily.org/index.php

