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Abstract. After the current maintenance period, the LHC will provide higher energy collisions
with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to
speed up substantially. However, ATLAS code is composed of approximately 6M lines, written
by many different programmers with different backgrounds, which makes code optimisation a
challenge. To help with this effort different profiling tools and techniques are being used. These
include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools
like Pin, PAPI, and GOoDA; as well as techniques such as library interposing. In this paper
we will mainly focus on Pin tools and GOoDA. Pin is a dynamic binary instrumentation tool
which can obtain statistics such as call counts, instruction counts and interrogate functions’
arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes
for linear algebra calculations which has provided the insight necessary to achieve significant
performance improvements. Complimenting this, GOoDA, an in-house performance tool built
in collaboration with Google, which is based on hardware performance monitoring unit events,
is used to identify hot-spots in the code for different types of hardware limitations, such as
CPU resources, caches, or memory bandwidth. GOoDA has been used in improvement of the
performance of new magnetic field code and identification of potential vectorization targets in
several places, such as Runge-Kutta propagation code.

1. Introduction
The Large Hadron Collider (LHC) [1] is a proton collider built about 100m underground near
Geneva, Switzerland. It has a 27 km circumference and it is designed to collide protons every
25 ns at a center-of-mass energy of 14 TeV with a luminosity of 1034 cm−2 s−1. It started
operation in 2010 and gradually increased the collision energy and luminosity. In 2011 LHC
delivered a peak luminosity of 3.42×1033 cm−2 s−1 in 31 weeks of proton-proton collision runs
at
√
s = 7 TeV with 50 ns bunch crossing interval. In 2012, the center-of-mass energy was

increased to 8 TeV and the peak instantaneous luminosity exceeded 7.7×1033 cm−2 s−1. From
March 2013, it has been shutdown for two years for maintenance and upgrades. It will operate
at a higher beam energy and higher luminosity after the shutdown.

There are 4 detectors located at the LHC. ATLAS [2] is one of the two large general purpose
detectors. It is composed of different co-centric cylindrical detectors of about 100 M readout
channels in total. The ATLAS detector has a three-level trigger system to do event selection
and reduce the enormous amounts of data produced to manageable sizes. Level 1 of the trigger
is based on hardware and located on the detector. It has a design input rate of 40 MHz and
an output rate of 75 kHz. Level 2 and Level 3 are based on software running on a PC farm of



about 16k cores. They reduce final event rate to 600 Hz at ∼1.6 MB per event. Selected events
are stored and processed offline in more detail. Both online and offline selection is done using
the same software framework called Athena, with different configurations. Up to the shutdown
in 2013 ATLAS had stored and processed ∼22 PB of raw data.

2. ATLAS Software
The ATLAS software framework is based on the Gaudi framework [3] and comprises more than
6 million lines of C++ and Python, with a small amount of FORTRAN code. It is spread over
about 2000 packages, producing more than 4000 libraries of various sizes. It has been evolving
for more than 10 years and was written by people with varied programming backgrounds. Some
parts of the code were written by expert level programmers, while some were written by people
with minimal programming knowledge. Throughout its development, detailed knowledge of
packages has been frequently lost due to authors and maintainers changing topics, institutes
or leaving the field. Athena configuration is done in Python and reconstruction of a 2012 high
pile-up sample(〈µ〉 ∼ 35) with 64-bit application consumes about ∼4 GB of virtual memory and
has approximately 2.7 GB resident set size(RSS).

With the increase in LHC energy, collision rate, event complexity and trigger output, ATLAS
software needs to speed up considerably. Due to sheer size of the codebase and the domain
expertise required it is not practical to go through the codebase to fix even the simplest
perfomance issues. So instead, efforts should be focused on so called hot-spots, where a small
section of source code contributes significantly to overall application run time. In order to
monitor the performance of Athena, ATLAS uses various tools. These range from commonly
available tools such as Valgrind suite, Google perf tools, oprofile, Intel VTUNE, igprof, PAPI
and Pin [4] to in house developed tools PerfMon and Generic Optimization Data Analyzer
(GOoDA) [5], which is developed in collaboration with Google. However, the enormous size of
Athena creates significant challanges for most of these tools. In this report we will be describing
our experience of improving the performance of Athena using GOoDA and Pin.

3. GOoDA
The Generic Optimization Data Analyzer is an open source project developed by a collaboration
between ATLAS and Google. It uses Linux perf tool to configure and collect detailed
performance monitoring unit(PMU) information from hardware monitoring units built in CPUs.
Then it analyses the collected monitoring information, grouping it into a few issue classes. These
issue classes provide a more general understanding of the code’s performance than CPU specific
PMU values. Results of the analysis are written in report spreadsheets which can we viewed
through a web browser either locally or remotely. An example of such a report is shown in
figure 1.

GOoDA reports contain hot-spots for each type of performance issue down to instruction level.
It can also display source line if sources are available. Figure 1 shows a profile of Athena offline
reconstruction job with high number of proton collisions (pile-up) per input event. Investigation
of the profile shows several groups of code with rather specific issues. The most frequently
encountered code domain is the tracking code. Being composed of a high number of arithmetic
calculations, due to vector and matrix operations, this code frequently has instruction related
issues, such as instruction starvation. It is possible to overcome such issues by using single
instruction multiple data (SIMD) operations. Due to the intrinsic geometric nature of the
tracking problem, representing tracking operations in terms of primitives of a SIMD vector
math library is the most feasible approach, both from maintainability and development time
points of view. However, such vector math libraries are not equally efficient for all types of
operations or for all sizes of vectors and matrices. How the decision on which vector math
library to use was taken is explained in the next section.
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Figure 1. Main page of GOoDA profile. The left frame displays available reports. The top
right frame displays processes in the report and their respective PMU event counts. The bottom
right frame shows list of hot-spot functions in the selected process and their respective event
counts.

The second group is the frequent use of new/delete operators, which is due to the design
of the event data model. Frequent memory allocation and deallocation was already identified
previously and some actions, such as replacing standard malloc with thread caching malloc
(tcmalloc) from Google, were used to mitigate the effect of this. However, it still remains a
significant problem and the profile helps to quantify it. In order to further reduce these frequent
allocation/deallocation effects, there have been some changes in the event data model. There
are also some studies, such as using memory arenas and different memory allocators, ongoing to
reduce the impact on the performance.

The third group is the magnetic field code. This was written in FORTRAN and most of
the time was actually spent on interfacing the old FORTRAN code with the C++ framework.
So, rather than optimizing FORTRAN, the code was re-written in C++ from scratch. The
new code was already 2x faster than the FORTRAN implementation due to a better design
and native interfacing. After profiling a simple test job, which is querying the magnetic field
at random points in the detector to stress it, further hot-spots were identified (see figure 2).
The most notable point in this table is that about 70% of stall cycles are due to instruction
latency coming from division operations. Following up the report points to the source lines 101-
108 in figure 3. However, even though replacing division operators with inverse multiplications
is straight forward and common performance practice, it doesn’t maximize the performance.
Further profiles have shown that there is instruction starvation around the lines shown in figure 3.
After a detailed investigation of the source code, it can be seen that the complex calculations in
lines 84-95 can be written as a dot product of two vectors with properly arranged coefficients.
Profiling the version with the vector products and inverse multiplications is shown in the bottom
table in figure 2. It is clearly visible here, that total unhalted core cycles count is reduced by 42%



with respect to initial profile. The final version is about 40% faster than initial code and overall
effect of the new code with respect to the FORTRAN implementation is measured between 5%
to 20% improvement in the runtime of simulation jobs.
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Figure 2. Profile report of new magnetic field test job. The top profile is before optimization.
The first hot-spot shows high percentage of stall cycles mostly originating from instruction
latency coming from division operations. The bottom profile is after optimizing divisions and
multiplications.

Figure 3. Source code of hot-spots in the magnetic field code. Division operations are the
cause of the instruction latency and complex calculations are the cause of instruction starvation.
These complex calculations can be re-written as a dot product of two vectors.

4. Pin Tools
Pin is a dynamic binary instrumentation framework from Intel. It instruments binaries at
run-time, eliminating need to modify or recompile the code. It can instrument the binary
from instruction level to function level and supports dynamically generated code. Pin can
access function parameters and register contents and it can work with threaded programs. If
available, it provides limited access to symbol and debug information in the original binary.
Instrumentation is done on an in-memory copy of the binary. Pin inspects the instructions in



original binary and inserts calls to analysis functions. Due to its powerful features it has been
used in computer architecture, security, emulation and parallel program analysis tools, such as
Intel’s Parallel Inspector, Parallel Amplifier, Trace Analyzer and Collector as well as CMP$im
and many others. It has detailed documentation and an active user support community called
PinHeads.

As mentioned in previous section, tracking code is largely composed of vector and martix
operations. In Athena, CLHEP library [6] is used for most of the vector and matrix
representation and their operations. However, the CLHEP library is not performance optimized
and does not vectorize well. There are other SIMD vector and matrix libraries available, each
having different performance for different primitive sizes and operations. In order to quantify
most common vector dimensions and operation we instrumented CLHEP vector classes in Athena
with Pin.

Table 1. Top 10 most frequently called CLHEP functions in Athena for 20 events with total
instructions and average instructions per call, sorted by total instruction count.

Calls Instr <instr>/call Function
1778523 6392431813 3594.24 operator*( HepMatrix const&, HepSymMatrix const&)

671676353 5988139520 8.92 Hep2Vector::operator()(int) const
232093102 5956556656 25.66 Transform3D::operator()(int, int) const
285282108 3709057782 13.00 Hep3Vector::operator()(int)

15815930 3179001930 201.00
HepRotation::rotateAxes( Hep3Vector const&,

Hep3Vector const&, Hep3Vector const&)
20529818 2422518524 118.00 Transform3D::inverse() const
31612743 2212258670 69.98 HepSymMatrix::HepSymMatrix( HepSymMatrix const&)
28914115 1929106393 66.72 HepVector::HepVector(int, int)
51974716 1819115060 35.00 operator*( Transform3D const&, Point3D<double>const&)
27652274 1506352669 54.47 HepVector::HepVector( HepVector const&)

Table 1 shows the most frequently called CLHEP functions, together with their instruction
costs and averge number of instructions per event, sorted by their total instruction counts.
The multiplication operator for multiplication of a matrix with a symmetric matrix is the most
expensive operation. These matrices usually have dimensions 5×5, 5×3, 3×3 and 3×5. Accessor
operators for vectors and 3D transformation matrices also contribute significantly to instruction
counts. The number of instructions can be significantly reduced by inlining.

Using information gained from Pin instrumentation, we devised a benchmark for various
SIMD vector math libraries. The benchmark composes several operations such as A5×3×B3×5,
A5×3×B3×5 + αC5×5 and A4×4×B4×4. The 4×4 matrices are benchmarked in place of 3×3
matrices since a translation and rotation operation can be combined in this way. We implemented
these operations using various vector math libraries such as CLHEP, the Intel Math Kernel
Library(MKL) [7], the S-Matrix library [8] and the Eigen [9] library. The speedup ratio with
respect to CLHEP for each library is shown in figure 4. Intel MKL was between 5-20% slower
than CLHEP for small matrix operations. This is probably due to its tuning for rather large
sized matrix operations. Nevertheless, for A5×3×B3×5 + αC5×5 it was about 2 times faster
than CLHEP. The S-Matrix library, which is included in ROOT framework and based on C++
expression templates, provided a speed up between 3.2 to 4.4 times compared to CLHEP. The
best speedup is achieved by Eigen library which achieved 6 to 12 times speed up with respect
to CLHEP depending on the operation. Eigen is similar to S-Matrix in that it uses expression
templates, however, on top of that, it also contains explicit vectorization with SIMD instructions,



Figure 4. Speedup ratios of various libraries for different operations with respect to CLHEP
library. The matrix sizes were found by instrumenting Athena and correspond to most commonly
used matrix sizes in ATLAS reconstruction. The Eigen library performs significantly better than
the other candidates.

avoids dynamic memory allocations and unrolls loops whenever it makes sense for fixed size
matrices. Thanks to its significant speedup with respect to CLHEP, Eigen was choosen as a
replacement for CLHEP. Migration from CLHEP to Eigen library in Athena framework is in
progress.

5. Conclusions
The optimization of many-developer large code bases such as Athena is a challenging task. Using
GOoDA we identified several performance problems and focused our efforts on these points.
Replacement of magnetic field code alone provided up to 20% improvement in overall runtime
while maintaining same physics performance and being used as the default field implementation
in recent Athena releases. Using Pin we analyzed the most frequently used vector and matrix
operations in Athena and better constrained the requirements of the vector math library. Using
this information we picked the Eigen library as a replacement for CLHEP.

Both GOoDA and Pin are proven to be valuable tools for analyzing and improving Athena
framework. Much information can be gained with little effort. Both tools can be used by average
programmer at a basic level after some study, however it requires a certain level of expertise to
fully exploit either tool.
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