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Introduction
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Detector simulation

● Full simulation (GEANT):
         
         -   simulates particle-matter interaction (including e.m. showering, nuclear int., 
brehmstrahlung, photon conversions, etc ...)  →  10 s /ev

●  Experiment Fast simulation (ATLAS, CMS ...):

         -   simplifies and makes faster simulation and reconstruction  →  1 s /ev

●  Parametric simulation:

    Delphes, PGS:

        -   parameterize detector response, reconstruct complex objects  →  10 ms /ev

    TurboSim

        -   no detector,parameterize object response, parton ↔  reco
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Parametric simulation

● What do we expect from Delphes parametric detector simulation ?

     -   fast
     -   realistic enough  
     -   flexible detector geometry
     -   user-friendly
     -   flexible I/O (modular)

● When do you need Delphes?

         → more advanced than parton-level studies
         → scan big parameter space (SUSY-like ...)
         → preliminary tests of new geometries/resolutions (upgrades, Snowmass)
         → testing analysis methods (multivariate/Matrix Element)
         → educational purpose (master thesis)
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Workflow
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What is Delphes?

● Delphes is a modular framework that simulates of the response of a 
multipurpose detector

● simulates:

     -   charged particle propagation in 
         magnetic field: tracking
     -   electromagnetic and hadronic calorimeters  

  -   muon system  

● reconstructs:
  
  -   leptons (electrons and muons)
  -   photons
  -   jets and missing transverse energy
  -   taus and b's
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Technical features

● modular C++ code, uses ROOT classes

● Input

    -   Pythia/Herwig output (HepMC,STDHEP)
    -   LHE (MadGraph/MadEvent)

● Output
 
     -   ROOT trees

● Configuration file

  -  define geometry
  -  resolution/reconstruction/selection criteria
  -  output object collections    
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Charged Particle Propagation

● Charged particles are propagated in the magnetic field until they reach the 
calorimeters

● Propagation parameters:

     -   magnetic field B
     -   radius and half-length (R

max
, z

max
) 

● Efficiency/resolution depends on:
  
  -   particle ID
  -   transverse momentum
  -   pseudorapidity

Not real tracking/vertexing !!
  → no fake tracks/ conversions (but can be easily implemented)
  → no dE/dx measurements
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Calorimetry

● em/had calorimeters have same 
segmentation in eta/phi 

● Each particle that reaches the 
calorimeters deposits a fraction of its 
energy in one ECAL cell (fEM) and HCAL 
cell (fHAD), depending on its type:

● Particle energy is smeared 
according to the calorimeter 
cell it reaches
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Particle-Flow algorithm

“Particle-flow” approach aims at maximizing object reconstruction 
resolution by using all sub-detector information (in Delphes tracking, ECAL 
and HCAL)    → particle-flow candidates can be used as input for jets        
                          and E

T
miss

                          
● For each calorimeter cell: 
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Leptons, photons

● Muons/photons/electrons

 -   identified via their PDG id
 -   inside the tracker coverage for electrons and muons
 -   muons do not deposit energy in calo (independent smearing parameterized in
     p

T
 and η)

 -   electrons and photons smeared according to electromagnetic calorimeter      
     resolution 

●  Isolation:                                       → modular structure allows to easily       
                                                           define different isolation 

      If rel.Iso ~ 0, the lepton is isolated  

● Not taken into account:
  
  -   fakes, punch-through, brehmstrahlung, conversions
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Jets / E
T

miss / H
T
  

 

● FastJet library used for jet clustering

-   all clustering algos supported: anti-kT, SisCone, ...

● Jets, ET
miss and HT  quantities can be formed from:

 -  calorimeter towers

 - “particle-flow” candidates:
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b and tau jets

● b-jets

   -   if b parton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   if c parton is found in a cone ΔR w.r.t jet direction 
       →  apply c-mistag rate
   -   if u,d,s,g parton is found in a cone ΔR w.r.t jet direction 
       →  apply light-mistag rate

          b-tag flag is then stored in the jet collection 

● tau-jets

   -   if tau lepton is found in a cone ΔR w.r.t jet direction 
       →  apply efficiency

-   else 
       →  apply tau-mistag rate

                       tau jets have their own collection (no leptonic tau decays)

can define pT and η dependent efficiency and mistag rate
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Modularity in action
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Does this approach work?
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Validation: jets and ET 
miss 

● Electrons, muons and photons are auto-validated by construction
● Jets and missing energy need to be tested:

    →  excellent agreement

CMS resolution from: The CMS Collaboration, CMS-PAS-PFT-09-001
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Performances

- small memory footprint
- short processing time with a standard laptop
- output 50% smaller than HepMC!
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New Features
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Pile-up motivations

● Pile-up becomes an issue at high luminosity LHC

– reduced efficiency

– worsened resolution (jets, E
T

miss)

– degraded isolation

– fake tracks, jets

● Efficiencies and resolutions can be tuned by hand to mimic pile-up

● Fake objects need to be simulated. Also, we want to have some 
predictive power:

       → We therefore introduced:   tunable simulation of pile-up  

                                                       pile-up substraction procedure. 

● This new feature is being actively validated in collaboration with the 
groups preparing results for Snowmass 2013 (CMS and ATLAS).
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Pile-up implementation

● Pile-up is implemented in Delphes since version 3.0.4

– mixes N minimum bias events with hard event sample

– spreads poisson(N) events along z-axis with configurable spread

● if z < |Zres| keep all charged and neutrals (→ ch. particles too close to hard 
scattering to be rejected)

● if z > |Zres| keep only neutrals (perfect charged subtraction)

● With this approach :

– charged subtraction is already done at the mixing level (faster)

– allows user to tune amount of charged particle subtraction by adjusting Z 
spread/resolution

● Residual pileup substraction is needed for jets and isolation.

– Use the FastJet Area approach (add ref.)

● compute ρ = event pile-up density

● jet correction : pT → pT − ρA (JetPileUpSubtractor)

● isolation : ∑ pT → ∑ pT − ρπR² (Isolation module itself)
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Performances (II)

53% 93%

Time consumption per module
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Event-display 

● A basic event-display is provided, based on ROOT EVE

– Displays tracks, calo-towers, jets.

– Useful for debugging

– More detailed version 

planed.
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Event-display with pile-up
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Conclusions



26

Development

● Delphes project started back in 2007

● Since 2009, its development is community-based
 -   ticketing system for improvement and bug-fixes

         → user proposed patches
    -   Quality control and core development is done at the UCL

● Team
- Two research scientists (P. Demin, J. de Favereau)

Website, repository, releases
Core developments and code optimization
Support

- One post-doc (M. Selvaggi) and one PhD student (A. Mertens)
   Re-optimization of the performances, validation

Implementation of new features
Support

● Widely tested and used by the community  > 100 citations !!                  

http://inspirehep.net/record/815350
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Conclusions

● Delphes 3 is out, with major improvements:

- modularity
- pile-up implementation
- revamped particle flow algorithm
- new visualization tool based on ROOT EVE
- default cards giving results on par with published performance from        
  LHC experiments
- now fully integrated within MadGraph5

● A paper is in preparation, old paper: arXiv:0903.2225 [hep-ph]

● Test it, and give us feedback!

https://cp3.irmp.ucl.ac.be/projects/delphes

https://cp3.irmp.ucl.ac.be/projects/delphes
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Event-display (Charged PU substr.)
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Event-display (Charged PU substr.)
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Backup slides
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Particle-Flow algorithm

“Particle-flow” approach aims at maximizing object reconstruction 
resolution by using all sub-detector information (in Delphes tracking, ECAL 
and HCAL)    → particle-flow candidates can be used as input for jets        
                          and E

T
miss

                          
● For each calorimeter cell: 

π +

ECAL

HCAL
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Particle-Flow algorithm

● “Particle-flow” approach aims at maximizing object reconstruction 
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π +
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Pile-up sanity checks 

MET

Jets
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Event-display (Charged PU substr.)
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Delphes 2 - Validation: jets

● Electrons, muons and photons are auto-validated by construction
● Jets and missing energy need to be tested:

    →  good agreement
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Delphes 2 -Validation: E
T

miss

● Electrons, muons and photons are auto-validated by construction
● Jets and missing energy need to be tested:

    →  good agreement
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