

Delphes 3

Framework for fast simulation of a generic collider experiment

Michele Selvaggi, for the Delphes Team

Université Catholique de Louvain (UCL) Center for Particle Physics and Phenomenology (CP3)

> ACAT, Beijing May 18, 2013

Introduction

Detector simulation

• Full simulation (GEANT):

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) $\rightarrow 10 \text{ s/ev}$

- Experiment Fast simulation (ATLAS, CMS ...):
 - simplifies and makes faster simulation and reconstruction $\,\rightarrow\,$ 1 s /ev
- Parametric simulation:

Delphes, PGS:

- parameterize detector response, reconstruct complex objects \rightarrow 10 ms /ev

<u>TurboSim</u>

- **no detector**, parameterize object response, parton ↔ reco

Detector simulation

• Full simulation (GEANT):

- **simulates** particle-matter interaction (including e.m. showering, nuclear int., brehmstrahlung, photon conversions, etc ...) $\rightarrow 10 \text{ s/ev}$

- Experiment Fast simulation (ATLAS, CMS ...):
 - simplifies and makes faster simulation and reconstruction \rightarrow 1 s /ev
- Parametric simulation:

Delphes:

- parameterize detector response, reconstruct complex objects \rightarrow 10 ms /ev

<u>TurboSim</u>

- **no detector**, parameterize object response, parton ↔ reco

Parametric simulation

- What do we expect from Delphes parametric detector simulation ?
 - fast
 - realistic enough
 - flexible detector geometry
 - user-friendly
 - flexible I/O (modular)
- When do you need Delphes?
 - \rightarrow more advanced than parton-level studies
 - \rightarrow scan big parameter space (SUSY-like ...)
 - \rightarrow preliminary tests of new geometries/resolutions (upgrades, Snowmass)
 - \rightarrow testing analysis methods (multivariate/Matrix Element)
 - \rightarrow educational purpose (master thesis)

Workflow

- **Delphes** is a **modular framework** that simulates of the response of a multipurpose detector
- simulates:
 - charged particle propagation in magnetic field: tracking
 - electromagnetic and hadronic calorimeters
 - muon system
- reconstructs:
 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy
 - taus and b's

Technical features

- modular C++ code, uses ROOT classes
- Input
 - Pythia/Herwig output (HepMC,STDHEP)
 - LHE (MadGraph/MadEvent)
- Output
 - ROOT trees
- Configuration file
 - define geometry
 - resolution/reconstruction/selection criteria
 - output object collections

- Charged particles are propagated in the magnetic field until they reach the calorimeters
- Propagation parameters:
 - magnetic field B
 - radius and half-length (R_{max} , z_{max})
- Efficiency/resolution depends on:
 - particle ID
 - transverse momentum
 - pseudorapidity

# efficiency formula for muons	
add EfficiencyFormula {13} { (pt <= 0.1)	* (0.000) + \
(abs(eta) <= 1.5) * (pt > 0.1 && pt <= 1.0)	* (0.750) + \
(abs(eta) <= 1.5) * (pt > 1.0)	* (1.000) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 0.1 && pt <= 1.0)	* (0.700) + \
(abs(eta) > 1.5 && abs(eta) <= 2.5) * (pt > 1.0)	* (0.975) + \
(abs(eta) > 2.5)	* (0.000)}

- Not real tracking/vertexing !!
 - \rightarrow no fake tracks/ conversions (but can be easily implemented)
 - \rightarrow no dE/dx measurements

Calorimetry

- em/had calorimeters have same segmentation in eta/phi
- Each particle that reaches the calorimeters deposits a fraction of its energy in one ECAL cell (f_{EM}) and HCAL cell (f_{HAD}), depending on its type:

particles	f _{em}	f _{HAD}
$e \gamma \pi^0$	1	0
Long-lived neutral hadrons ($\mathrm{K}^{\mathrm{o}}_{\ \mathrm{S}}$, Λ^{o})	0.3	0.7
νμ	0	0
others	0	1

 Particle energy is smeared according to the calorimeter cell it reaches

 $E_{smeared} = gauss(f_{EM}E, \sigma_{EM}(\eta)) + gauss(f_{HAD}E, \sigma_{HAD}(\eta))$

$$\sigma^{2}(\eta) = N^{2}(\eta) + S^{2}(\eta)E + C^{2}(\eta)E^{2}$$

"Particle-flow" approach aims at maximizing object reconstruction resolution by using all sub-detector information (in Delphes tracking, ECAL and HCAL) \rightarrow particle-flow candidates can be used as input for jets and E_{τ}^{miss}

• For each calorimeter cell:

Leptons, photons

- Muons/photons/electrons
 - identified via their PDG id
 - inside the tracker coverage for electrons and muons
 - muons do not deposit energy in calo (independent smearing parameterized in p_{τ} and $\eta)$
 - electrons and photons smeared according to electromagnetic calorimeter resolution
- Isolation:

$$rel.Iso = rac{\sum\limits_{\Delta R < 0.5} p_T^{track}}{p_T}$$

→ modular structure allows to easily define different isolation

If rel.Iso ~ 0, the lepton is isolated

- Not taken into account:
 - fakes, punch-through, brehmstrahlung, conversions

Jets / E_{τ}^{miss} / H_{τ}

- FastJet library used for jet clustering
 - all clustering algos supported: anti-kT, SisCone, ...
- Jets, E_T^{miss} and $H_T^{}$ quantities can be formed from:
 - calorimeter towers
 - "particle-flow" candidates:

$$\overrightarrow{E_T}^{miss} = -\sum_i \overrightarrow{p_T}(i), \qquad H_T = \sum_i |\overrightarrow{p_T}(i)|,$$

b and tau jets

- <u>b-jets</u>
 - if **b** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply efficiency
 - if **c** parton is found in a cone ΔR w.r.t jet direction
 - \rightarrow apply **c-mistag rate**
 - if **u,d,s,g** parton is found in a cone ΔR w.r.t jet direction
 - → apply light-mistag rate

b-tag flag is then stored in the jet collection

- <u>tau-jets</u>
 - if tau lepton is found in a cone ΔR w.r.t jet direction \rightarrow apply **efficiency**
 - else
 - → apply tau-mistag rate

tau jets have their own collection (no leptonic tau decays)

can define p_T and η dependent efficiency and mistag rate

Modularity in action

Does this approach work?

- Electrons, muons and photons are auto-validated by construction
- Jets and missing energy need to be tested:

 \rightarrow excellent agreement

Performances

- small memory footprint
- short processing time with a standard laptop
- output 50% smaller than HepMC!

Pile-up motivations

- Pile-up becomes an issue at high luminosity LHC
 - reduced efficiency
 - worsened **resolution** (jets, E_T^{miss})
 - degraded isolation
 - fake tracks, jets
- Efficiencies and resolutions can be tuned by hand to mimic pile-up
- Fake objects need to be simulated. Also, we want to have some predictive power:
 - \rightarrow We therefore introduced: tunable **simulation** of pile-up pile-up **substraction** procedure.
- This new feature is being actively validated in collaboration with the groups preparing results for Snowmass 2013 (CMS and ATLAS).

Pile-up implementation

- Pile-up is implemented in Delphes since version 3.0.4
 - mixes N minimum bias events with hard event sample
 - spreads **poisson(N)** events along z-axis with configurable spread
 - if z < |Zres| keep all charged and neutrals (→ ch. particles too close to hard scattering to be rejected)
 - if z > |Zres| keep only neutrals (perfect charged subtraction)
- With this approach :
 - charged subtraction is already done at the mixing level (faster)
 - allows user to tune amount of charged particle subtraction by adjusting Z spread/resolution
- Residual pileup substraction is needed for jets and isolation.
 - Use the FastJet Area approach (add ref.)
 - compute ρ = event pile-up density
 - jet correction : $pT \rightarrow pT pA$ (JetPileUpSubtractor)
 - isolation : $\sum pT \rightarrow \sum pT \rho\pi R^2$ (Isolation module itself)

Performances (II)

C

Time consumption per module

- A basic event-display is provided, based on ROOT EVE
 - Displays tracks, calo-towers, jets.
 - Useful for debugging
 - More detailed version planed.

Event-display with pile-up

$Z_{spread} \approx Z_{res}$, 50 av. pile-up

Conclusions

Development

- Delphes project started back in 2007
- Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes
 - \rightarrow user proposed patches
 - Quality control and core development is done at the UCL
- Team
 - Two research scientists (P. Demin, J. de Favereau) Website, repository, releases Core developments and code optimization Support
 - One post-doc (M. Selvaggi) and one PhD student (A. Mertens) Re-optimization of the performances, validation Implementation of new features Support
- Widely tested and used by the community > <u>100 citations</u> !!

- **Delphes 3** is out, with **major improvements**:
 - modularity
 - pile-up implementation
 - revamped particle flow algorithm
 - new visualization tool based on ROOT EVE
 - default cards giving results on par with published performance from LHC experiments
 - now fully integrated within MadGraph5
- A paper is in preparation, old paper: arXiv:0903.2225 [hep-ph]
- Test it, and give us feedback!

Event-display (Charged PU substr.)

$Z_{spread} \gg Z_{res}$, 50 av. pile-up

Event-display (Charged PU substr.)

$Z_{spread} \gg Z_{res}$, 50 av. pile-up

Backup slides

"Particle-flow" approach aims at maximizing object reconstruction resolution by using all sub-detector information (in Delphes tracking, ECAL and HCAL) \rightarrow particle-flow candidates can be used as input for jets and E_{T}^{miss}

• For each calorimeter cell:

"Particle-flow" approach aims at maximizing object reconstruction resolution by using all sub-detector information (in Delphes tracking, ECAL and HCAL) \rightarrow particle-flow candidates can be used as input for jets and E_{τ}^{miss}

• For each calorimeter cell:

- "Particle-flow" approach aims at maximizing object reconstruction resolution by using all sub-detector information (in Delphes tracking, ECAL and HCAL)
 - \rightarrow particle-flow candidates can be used as input for jets and $E_{\tau}^{\rm miss}$
- For each calorimeter cell:

Pile-up sanity checks

Event-display (Charged PU substr.)

$Z_{spread} \gg Z_{res}$, 50 av. pile-up

- Electrons, muons and photons are auto-validated by construction
- Jets and missing energy need to be tested:

 \rightarrow good agreement

Delphes 2 -Validation: E_{τ}^{miss}

- Electrons, muons and photons are auto-validated by construction
- Jets and missing energy need to be tested:

 \rightarrow good agreement